-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathFinetuningBERTForSemanticTextualSimilarity_PythonCodeTutorial.py
390 lines (280 loc) · 10.9 KB
/
FinetuningBERTForSemanticTextualSimilarity_PythonCodeTutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# %% [markdown]
# ### 1. Install and import the required packages
# %%
!pip install transformers sentence-transformers datasets
# %%
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, models
from transformers import BertTokenizer
from transformers import get_linear_schedule_with_warmup
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
from tqdm import tqdm
import time
import datetime
import random
import numpy as np
import pandas as pd
# %% [markdown]
# ### 2. Use Google Colab's GPU for training
# %%
if torch.cuda.is_available():
device = torch.device("cuda")
print(f'There are {torch.cuda.device_count()} GPU(s) available.')
print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
# %% [markdown]
# ### **3.** Load and preview the Semantic Textual Similarity Benchmark (STSB) dataset
# %%
# Load the English version of the STSB dataset
dataset = load_dataset("stsb_multi_mt", "en")
# %%
print(dataset)
# %%
print("A sample from the STSB dataset's training split:")
print(dataset['train'][98])
# %% [markdown]
# ### **4.** Define the dataset loader class
#
# %%
# Instantiate the BERT tokenizer
# You can use larger variants of the model, here we're using the base model
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# %%
class STSBDataset(torch.utils.data.Dataset):
def __init__(self, dataset):
# Normalize the similarity scores in the dataset
similarity_scores = [i['similarity_score'] for i in dataset]
self.normalized_similarity_scores = [i/5.0 for i in similarity_scores]
self.first_sentences = [i['sentence1'] for i in dataset]
self.second_sentences = [i['sentence2'] for i in dataset]
self.concatenated_sentences = [[str(x), str(y)] for x,y in zip(self.first_sentences, self.second_sentences)]
def __len__(self):
return len(self.concatenated_sentences)
def get_batch_labels(self, idx):
return torch.tensor(self.normalized_similarity_scores[idx])
def get_batch_texts(self, idx):
return tokenizer(self.concatenated_sentences[idx], padding='max_length', max_length=128, truncation=True, return_tensors="pt")
def __getitem__(self, idx):
batch_texts = self.get_batch_texts(idx)
batch_y = self.get_batch_labels(idx)
return batch_texts, batch_y
def collate_fn(texts):
input_ids = texts['input_ids']
attention_masks = texts['attention_mask']
features = [{'input_ids': input_id, 'attention_mask': attention_mask}
for input_id, attention_mask in zip(input_ids, attention_masks)]
return features
# %% [markdown]
# ### 5. Define the model class based on BERT
# %%
class BertForSTS(torch.nn.Module):
def __init__(self):
super(BertForSTS, self).__init__()
self.bert = models.Transformer('bert-base-uncased', max_seq_length=128)
self.pooling_layer = models.Pooling(self.bert.get_word_embedding_dimension())
self.sts_bert = SentenceTransformer(modules=[self.bert, self.pooling_layer])
def forward(self, input_data):
output = self.sts_bert(input_data)['sentence_embedding']
return output
# %%
# Instantiate the model and move it to GPU
model = BertForSTS()
model.to(device)
# %% [markdown]
# ### 6. Define the Cosine Similarity loss function
# %%
class CosineSimilarityLoss(torch.nn.Module):
def __init__(self, loss_fn=torch.nn.MSELoss(), transform_fn=torch.nn.Identity()):
super(CosineSimilarityLoss, self).__init__()
self.loss_fn = loss_fn
self.transform_fn = transform_fn
self.cos_similarity = torch.nn.CosineSimilarity(dim=1)
def forward(self, inputs, labels):
emb_1 = torch.stack([inp[0] for inp in inputs])
emb_2 = torch.stack([inp[1] for inp in inputs])
outputs = self.transform_fn(self.cos_similarity(emb_1, emb_2))
return self.loss_fn(outputs, labels.squeeze())
# %% [markdown]
# ### 7. Prepare the training and validation data split
# %%
train_ds = STSBDataset(dataset['train'])
val_ds = STSBDataset(dataset['dev'])
# Create a 90-10 train-validation split.
train_size = len(train_ds)
val_size = len(val_ds)
print('{:>5,} training samples'.format(train_size))
print('{:>5,} validation samples'.format(val_size))
# %%
batch_size = 8
train_dataloader = DataLoader(
train_ds, # The training samples.
num_workers = 4,
batch_size = batch_size, # Use this batch size.
shuffle=True # Select samples randomly for each batch
)
validation_dataloader = DataLoader(
val_ds,
num_workers = 4,
batch_size = batch_size # Use the same batch size
)
# %% [markdown]
# ### 8. Define the Optimizer and Scheduler
# %%
optimizer = AdamW(model.parameters(),
lr = 1e-6)
# %%
epochs = 8
# Total number of training steps is [number of batches] x [number of epochs].
total_steps = len(train_dataloader) * epochs
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps = 0,
num_training_steps = total_steps)
# %% [markdown]
# ### 9. Define a helper function for formatting the elapsed training time as `hh:mm:ss`
# %%
# Takes a time in seconds and returns a string hh:mm:ss
def format_time(elapsed):
# Round to the nearest second.
elapsed_rounded = int(round((elapsed)))
# Format as hh:mm:ss
return str(datetime.timedelta(seconds=elapsed_rounded))
# %% [markdown]
# ### 10. Define the training function, and start the training loop
# %%
def train():
seed_val = 42
criterion = CosineSimilarityLoss()
criterion = criterion.to(device)
random.seed(seed_val)
torch.manual_seed(seed_val)
# We'll store a number of quantities such as training and validation loss,
# validation accuracy, and timings.
training_stats = []
total_t0 = time.time()
for epoch_i in range(0, epochs):
# ========================================
# Training
# ========================================
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
print('Training...')
t0 = time.time()
total_train_loss = 0
model.train()
# For each batch of training data...
for train_data, train_label in tqdm(train_dataloader):
train_data['input_ids'] = train_data['input_ids'].to(device)
train_data['attention_mask'] = train_data['attention_mask'].to(device)
train_data = collate_fn(train_data)
model.zero_grad()
output = [model(feature) for feature in train_data]
loss = criterion(output, train_label.to(device))
total_train_loss += loss.item()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
# Calculate the average loss over all of the batches.
avg_train_loss = total_train_loss / len(train_dataloader)
# Measure how long this epoch took.
training_time = format_time(time.time() - t0)
print("")
print(" Average training loss: {0:.5f}".format(avg_train_loss))
print(" Training epoch took: {:}".format(training_time))
# ========================================
# Validation
# ========================================
print("")
print("Running Validation...")
t0 = time.time()
model.eval()
total_eval_accuracy = 0
total_eval_loss = 0
nb_eval_steps = 0
# Evaluate data for one epoch
for val_data, val_label in tqdm(validation_dataloader):
val_data['input_ids'] = val_data['input_ids'].to(device)
val_data['attention_mask'] = val_data['attention_mask'].to(device)
val_data = collate_fn(val_data)
with torch.no_grad():
output = [model(feature) for feature in val_data]
loss = criterion(output, val_label.to(device))
total_eval_loss += loss.item()
# Calculate the average loss over all of the batches.
avg_val_loss = total_eval_loss / len(validation_dataloader)
# Measure how long the validation run took.
validation_time = format_time(time.time() - t0)
print(" Validation Loss: {0:.5f}".format(avg_val_loss))
print(" Validation took: {:}".format(validation_time))
# Record all statistics from this epoch.
training_stats.append(
{
'epoch': epoch_i + 1,
'Training Loss': avg_train_loss,
'Valid. Loss': avg_val_loss,
'Training Time': training_time,
'Validation Time': validation_time
}
)
print("")
print("Training complete!")
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
return model, training_stats
# %%
# Launch the training
model, training_stats = train()
# %%
# Create a DataFrame from our training statistics
df_stats = pd.DataFrame(data=training_stats)
# Use the 'epoch' as the row index
df_stats = df_stats.set_index('epoch')
# Display the table
df_stats
# %%
test_dataset = load_dataset("stsb_multi_mt", name="en", split="test")
# Prepare the data
first_sent = [i['sentence1'] for i in test_dataset]
second_sent = [i['sentence2'] for i in test_dataset]
full_text = [[str(x), str(y)] for x,y in zip(first_sent, second_sent)]
# %%
model.eval()
def predict_similarity(sentence_pair):
test_input = tokenizer(sentence_pair, padding='max_length', max_length=128, truncation=True, return_tensors="pt").to(device)
test_input['input_ids'] = test_input['input_ids']
test_input['attention_mask'] = test_input['attention_mask']
del test_input['token_type_ids']
output = model(test_input)
sim = torch.nn.functional.cosine_similarity(output[0], output[1], dim=0).item()
return sim
# %%
example_1 = full_text[100]
print(f"Sentence 1: {example_1[0]}")
print(f"Sentence 2: {example_1[1]}")
print(f"Predicted similarity score: {round(predict_similarity(example_1), 2)}")
# %%
example_2 = full_text[130]
print(f"Sentence 1: {example_2[0]}")
print(f"Sentence 2: {example_2[1]}")
print(f"Predicted similarity score: {round(predict_similarity(example_2), 2)}")
# %%
example_3 = full_text[812]
print(f"Sentence 1: {example_3[0]}")
print(f"Sentence 2: {example_3[1]}")
print(f"Predicted similarity score: {round(predict_similarity(example_3), 2)}")
# %% [markdown]
# ### Last but not least, save your model!
# %%
PATH = 'your/path/here'
torch.save(model.state_dict(), PATH)
# %%
# In order to load the model
# First, you have to create an instance of the model's class
# And use the saving path for the loading
# Don't forget to set the model to the evaluation state using .eval()
model = BertForSTS()
model.load_state_dict(torch.load(PATH))
model.eval()