-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathtest.py
34 lines (27 loc) · 1.03 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import tensorflow as tf
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# only use GPU memory that we need, not allocate all the GPU memory
tf.config.experimental.set_memory_growth(gpus[0], enable=True)
from utils import get_model, int2label
from tensorflow.keras.preprocessing.sequence import pad_sequences
import pickle
import numpy as np
SEQUENCE_LENGTH = 100
# get the tokenizer
tokenizer = pickle.load(open("results/tokenizer.pickle", "rb"))
model = get_model(tokenizer, 128)
# change to the model name in results folder
model.load_weights("results/spam_classifier_0.06.h5")
def get_predictions(text):
sequence = tokenizer.texts_to_sequences([text])
# pad the sequence
sequence = pad_sequences(sequence, maxlen=SEQUENCE_LENGTH)
# get the prediction
prediction = model.predict(sequence)[0]
# one-hot encoded vector, revert using np.argmax
return int2label[np.argmax(prediction)]
while True:
text = input("Enter the mail:")
# convert to sequences
print(get_predictions(text))