-
Notifications
You must be signed in to change notification settings - Fork 2k
/
Copy pathsatellite_image_classification_with_tensorflow_pythoncode.py
193 lines (159 loc) · 6.15 KB
/
satellite_image_classification_with_tensorflow_pythoncode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# -*- coding: utf-8 -*-
"""Satellite-Image-Classification-with-TensorFlow_PythonCode.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1SVpaW9HSebpHNYf6LXTm7elnHOSdQA5i
"""
!pip install tensorflow tensorflow_addons tensorflow_datasets tensorflow_hub numpy matplotlib seaborn
import os
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_hub as hub
import tensorflow_addons as tfa
# load the whole dataset, for data info
all_ds = tfds.load("eurosat", with_info=True)
# load training, testing & validation sets, splitting by 60%, 20% and 20% respectively
train_ds = tfds.load("eurosat", split="train[:60%]")
test_ds = tfds.load("eurosat", split="train[60%:80%]")
valid_ds = tfds.load("eurosat", split="train[80%:]")
# the class names
class_names = all_ds[1].features["label"].names
# total number of classes (10)
num_classes = len(class_names)
num_examples = all_ds[1].splits["train"].num_examples
# make a plot for number of samples on each class
fig, ax = plt.subplots(1, 1, figsize=(14,10))
labels, counts = np.unique(np.fromiter(all_ds[0]["train"].map(lambda x: x["label"]), np.int32),
return_counts=True)
plt.ylabel('Counts')
plt.xlabel('Labels')
sns.barplot(x = [class_names[l] for l in labels], y = counts, ax=ax)
for i, x_ in enumerate(labels):
ax.text(x_-0.2, counts[i]+5, counts[i])
# set the title
ax.set_title("Bar Plot showing Number of Samples on Each Class")
# save the image
# plt.savefig("class_samples.png")
def prepare_for_training(ds, cache=True, batch_size=64, shuffle_buffer_size=1000):
if cache:
if isinstance(cache, str):
ds = ds.cache(cache)
else:
ds = ds.cache()
ds = ds.map(lambda d: (d["image"], tf.one_hot(d["label"], num_classes)))
# shuffle the dataset
ds = ds.shuffle(buffer_size=shuffle_buffer_size)
# Repeat forever
ds = ds.repeat()
# split to batches
ds = ds.batch(batch_size)
# `prefetch` lets the dataset fetch batches in the background while the model
# is training.
ds = ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
return ds
batch_size = 64
# preprocess training & validation sets
train_ds = prepare_for_training(train_ds, batch_size=batch_size)
valid_ds = prepare_for_training(valid_ds, batch_size=batch_size)
# validating shapes
for el in valid_ds.take(1):
print(el[0].shape, el[1].shape)
for el in train_ds.take(1):
print(el[0].shape, el[1].shape)
# take the first batch of the training set
batch = next(iter(train_ds))
def show_batch(batch):
plt.figure(figsize=(16, 16))
for n in range(min(32, batch_size)):
ax = plt.subplot(batch_size//8, 8, n + 1)
# show the image
plt.imshow(batch[0][n])
# and put the corresponding label as title upper to the image
plt.title(class_names[tf.argmax(batch[1][n].numpy())])
plt.axis('off')
plt.savefig("sample-images.png")
# showing a batch of images along with labels
show_batch(batch)
model_url = "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_l/feature_vector/2"
# download & load the layer as a feature vector
keras_layer = hub.KerasLayer(model_url, output_shape=[1280], trainable=True)
m = tf.keras.Sequential([
keras_layer,
tf.keras.layers.Dense(num_classes, activation="softmax")
])
# build the model with input image shape as (64, 64, 3)
m.build([None, 64, 64, 3])
m.compile(
loss="categorical_crossentropy",
optimizer="adam",
metrics=["accuracy", tfa.metrics.F1Score(num_classes)]
)
m.summary()
model_name = "satellite-classification"
model_path = os.path.join("results", model_name + ".h5")
model_checkpoint = tf.keras.callbacks.ModelCheckpoint(model_path, save_best_only=True, verbose=1)
n_training_steps = int(num_examples * 0.6) // batch_size
n_validation_steps = int(num_examples * 0.2) // batch_size
history = m.fit(
train_ds, validation_data=valid_ds,
steps_per_epoch=n_training_steps,
validation_steps=n_validation_steps,
verbose=1, epochs=5,
callbacks=[model_checkpoint]
)
# number of testing steps
n_testing_steps = int(all_ds[1].splits["train"].num_examples * 0.2)
m.load_weights(model_path)
# get all testing images as NumPy array
images = np.array([ d["image"] for d in test_ds.take(n_testing_steps) ])
print("images.shape:", images.shape)
# get all testing labels as NumPy array
labels = np.array([ d["label"] for d in test_ds.take(n_testing_steps) ])
print("labels.shape:", labels.shape)
# feed the images to get predictions
predictions = m.predict(images)
# perform argmax to get class index
predictions = np.argmax(predictions, axis=1)
print("predictions.shape:", predictions.shape)
from sklearn.metrics import f1_score
accuracy = tf.keras.metrics.Accuracy()
accuracy.update_state(labels, predictions)
print("Accuracy:", accuracy.result().numpy())
print("F1 Score:", f1_score(labels, predictions, average="macro"))
# compute the confusion matrix
cmn = tf.math.confusion_matrix(labels, predictions).numpy()
# normalize the matrix to be in percentages
cmn = cmn.astype('float') / cmn.sum(axis=0)[:, np.newaxis]
# make a plot for the confusion matrix
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(cmn, annot=True, fmt='.2f',
xticklabels=[f"pred_{c}" for c in class_names],
yticklabels=[f"true_{c}" for c in class_names],
# cmap="Blues"
cmap="rocket_r"
)
plt.ylabel('Actual')
plt.xlabel('Predicted')
# plot the resulting confusion matrix
plt.savefig("confusion-matrix.png")
# plt.show()
def show_predicted_samples():
plt.figure(figsize=(14, 14))
for n in range(64):
ax = plt.subplot(8, 8, n + 1)
# show the image
plt.imshow(images[n])
# and put the corresponding label as title upper to the image
if predictions[n] == labels[n]:
# correct prediction
ax.set_title(class_names[predictions[n]], color="green")
else:
# wrong prediction
ax.set_title(f"{class_names[predictions[n]]}/T:{class_names[labels[n]]}", color="red")
plt.axis('off')
plt.savefig("predicted-sample-images.png")
# showing a batch of images along with predictions labels
show_predicted_samples()