Skip to content

Commit 4d9d332

Browse files
committed
updated face detection tutorial to use SSDs as well
1 parent 15e18cb commit 4d9d332

File tree

5 files changed

+1878
-0
lines changed

5 files changed

+1878
-0
lines changed
+41
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,41 @@
1+
import cv2
2+
import numpy as np
3+
4+
# https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt
5+
prototxt_path = "weights/deploy.prototxt.txt"
6+
# https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel
7+
model_path = "weights/res10_300x300_ssd_iter_140000_fp16.caffemodel"
8+
9+
# load Caffe model
10+
model = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)
11+
12+
# read the desired image
13+
image = cv2.imread("kids.jpg")
14+
# get width and height of the image
15+
h, w = image.shape[:2]
16+
17+
# preprocess the image: resize and performs mean subtraction
18+
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0))
19+
# set the image into the input of the neural network
20+
model.setInput(blob)
21+
# perform inference and get the result
22+
output = np.squeeze(model.forward())
23+
font_scale = 1.0
24+
for i in range(0, output.shape[0]):
25+
# get the confidence
26+
confidence = output[i, 2]
27+
# if confidence is above 50%, then draw the surrounding box
28+
if confidence > 0.5:
29+
# get the surrounding box cordinates and upscale them to original image
30+
box = output[i, 3:7] * np.array([w, h, w, h])
31+
# convert to integers
32+
start_x, start_y, end_x, end_y = box.astype(np.int)
33+
# draw the rectangle surrounding the face
34+
cv2.rectangle(image, (start_x, start_y), (end_x, end_y), color=(255, 0, 0), thickness=2)
35+
# draw text as well
36+
cv2.putText(image, f"{confidence*100:.2f}%", (start_x, start_y-5), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), 2)
37+
# show the image
38+
cv2.imshow("image", image)
39+
cv2.waitKey(0)
40+
# save the image with rectangles
41+
cv2.imwrite("kids_detected_dnn.jpg", image)
93.2 KB
Loading
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,47 @@
1+
import cv2
2+
import numpy as np
3+
4+
# https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt
5+
prototxt_path = "weights/deploy.prototxt.txt"
6+
# https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel
7+
model_path = "weights/res10_300x300_ssd_iter_140000_fp16.caffemodel"
8+
9+
# load Caffe model
10+
model = cv2.dnn.readNetFromCaffe(prototxt_path, model_path)
11+
12+
cap = cv2.VideoCapture(0)
13+
14+
while True:
15+
16+
# read the desired image
17+
_, image = cap.read()
18+
# get width and height of the image
19+
h, w = image.shape[:2]
20+
21+
# preprocess the image: resize and performs mean subtraction
22+
blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0))
23+
# set the image into the input of the neural network
24+
model.setInput(blob)
25+
# perform inference and get the result
26+
output = np.squeeze(model.forward())
27+
font_scale = 1.0
28+
for i in range(0, output.shape[0]):
29+
# get the confidence
30+
confidence = output[i, 2]
31+
# if confidence is above 50%, then draw the surrounding box
32+
if confidence > 0.5:
33+
# get the surrounding box cordinates and upscale them to original image
34+
box = output[i, 3:7] * np.array([w, h, w, h])
35+
# convert to integers
36+
start_x, start_y, end_x, end_y = box.astype(np.int)
37+
# draw the rectangle surrounding the face
38+
cv2.rectangle(image, (start_x, start_y), (end_x, end_y), color=(255, 0, 0), thickness=2)
39+
# draw text as well
40+
cv2.putText(image, f"{confidence*100:.2f}%", (start_x, start_y-5), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), 2)
41+
# show the image
42+
cv2.imshow("image", image)
43+
if cv2.waitKey(1) == ord("q"):
44+
break
45+
46+
cv2.destroyAllWindows()
47+
cap.release()

0 commit comments

Comments
 (0)