Skip to content

Commit 6a0d5bb

Browse files
committed
add creating plots in plotly tutorial
1 parent baa43ea commit 6a0d5bb

File tree

6 files changed

+560
-0
lines changed

6 files changed

+560
-0
lines changed

README.md

+1
Original file line numberDiff line numberDiff line change
@@ -55,6 +55,7 @@ This is a repository of all the tutorials of [The Python Code](https://www.thepy
5555
- [How to Perform Voice Gender Recognition using TensorFlow in Python](https://www.thepythoncode.com/article/gender-recognition-by-voice-using-tensorflow-in-python). ([code](https://github.com/x4nth055/gender-recognition-by-voice))
5656
- [Introduction to Finance and Technical Indicators with Python](https://www.thepythoncode.com/article/introduction-to-finance-and-technical-indicators-with-python). ([code](machine-learning/technical-indicators))
5757
- [Algorithmic Trading with FXCM Broker in Python](https://www.thepythoncode.com/article/trading-with-fxcm-broker-using-fxcmpy-library-in-python). ([code](machine-learning/trading-with-fxcm))
58+
- [How to Create Plots With Plotly In Python](https://www.thepythoncode.com/article/creating-dynamic-plots-with-plotly-visualization-tool-in-python). ([code](machine-learning/plotly-visualization))
5859

5960
- ### [General Python Topics](https://www.thepythoncode.com/topic/general-python-topics)
6061
- [How to Make Facebook Messenger bot in Python](https://www.thepythoncode.com/article/make-bot-fbchat-python). ([code](general/messenger-bot))
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,237 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": null,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"import plotly.offline as py\n",
10+
"import plotly.graph_objs as go\n",
11+
"import plotly.figure_factory as ff\n",
12+
"import pandas as pd\n",
13+
"import numpy as np\n",
14+
"import yfinance as yf\n",
15+
"import pandas_datareader as pdr\n",
16+
"\n",
17+
"py.init_notebook_mode()"
18+
]
19+
},
20+
{
21+
"cell_type": "code",
22+
"execution_count": null,
23+
"metadata": {},
24+
"outputs": [],
25+
"source": [
26+
"x = [ i for i in range(-10,10) ]\n",
27+
"\n",
28+
"y = [ i*2 for i in range(-10,10) ]\n",
29+
"\n",
30+
"xaxis = go.layout.XAxis(title=\"X Axis\")\n",
31+
"yaxis = go.layout.YAxis(title=\"Y Axis\")\n",
32+
"\n",
33+
"fig = go.Figure(layout=go.Layout(title=\"Simple Line Plot\", xaxis=xaxis, yaxis=yaxis))\n",
34+
"fig.add_trace(go.Scatter(x=x, y=y))"
35+
]
36+
},
37+
{
38+
"cell_type": "code",
39+
"execution_count": null,
40+
"metadata": {},
41+
"outputs": [],
42+
"source": [
43+
"def sigmoid(x):\n",
44+
" return 1 / (1 + np.exp((-1) * x))\n",
45+
"\n",
46+
"x = sorted(np.random.random(100) * 10 - 5)\n",
47+
"y = [ sigmoid(i) for i in x ]\n",
48+
"\n",
49+
"xaxis = go.layout.XAxis(title=\"X Axis\")\n",
50+
"yaxis = go.layout.YAxis(title=\"Y Axis\")\n",
51+
"\n",
52+
"fig=go.Figure(layout=go.Layout(title=\"Sigmoid Plot\",xaxis=xaxis, yaxis=yaxis))\n",
53+
"fig.add_trace(go.Scatter(x=x, y=y, marker=dict(color=\"red\")))"
54+
]
55+
},
56+
{
57+
"cell_type": "code",
58+
"execution_count": null,
59+
"metadata": {},
60+
"outputs": [],
61+
"source": [
62+
"l = []\n",
63+
"\n",
64+
"for _ in range(5):\n",
65+
" l.append([ sorted(np.random.randint(low=0, high=10000, size=50)), sorted(np.random.randint(low=0, high=10000, size=50)) ])\n",
66+
"\n",
67+
"l = np.array(l)\n",
68+
"\n",
69+
"figure = go.Figure(layout=go.Layout(title=\"Simple Scatter Example\", xaxis=go.layout.XAxis(title=\"X\"), yaxis=go.layout.YAxis(title=\"Y\")))\n",
70+
"for i in range(len(l)):\n",
71+
" figure.add_trace(go.Scatter(x=l[i][0],y=l[i][1], mode=\"markers\", name=f\" Distribution {i+1} \"))\n",
72+
"figure.show()"
73+
]
74+
},
75+
{
76+
"cell_type": "code",
77+
"execution_count": null,
78+
"metadata": {},
79+
"outputs": [],
80+
"source": [
81+
"dist = np.random.normal(loc=0, scale=1, size=50000)"
82+
]
83+
},
84+
{
85+
"cell_type": "code",
86+
"execution_count": null,
87+
"metadata": {},
88+
"outputs": [],
89+
"source": [
90+
"figure = go.Figure()\n",
91+
"figure.add_trace(go.Histogram(x=dist,))"
92+
]
93+
},
94+
{
95+
"cell_type": "code",
96+
"execution_count": null,
97+
"metadata": {},
98+
"outputs": [],
99+
"source": [
100+
"\n",
101+
"\n",
102+
"d=[{\"values\":np.random.normal(0,0.5,10000), \"information\": \" Normal Distribution with mean 0 and std= 0.5\"},\n",
103+
" {\"values\":np.random.normal(0,1,10000), \"information\": \" Normal Distribution with mean 0 and std= 1\"},\n",
104+
" {\"values\":np.random.normal(0,1.5,10000), \"information\": \" Normal Distribution with mean 0 and std= 1.5\"},\n",
105+
" {\"values\":np.random.normal(0,2,10000), \"information\": \" Normal Distribution with mean 0 and std= 2\"},\n",
106+
" {\"values\":np.random.normal(0,5,10000), \"information\": \" Normal Distribution with mean 0 and std= 5\"}]\n",
107+
"\n",
108+
"ff.create_distplot([ele[\"values\"] for ele in d], group_labels=[ele[\"information\"] for ele in d], show_hist=False)"
109+
]
110+
},
111+
{
112+
"cell_type": "code",
113+
"execution_count": null,
114+
"metadata": {},
115+
"outputs": [],
116+
"source": [
117+
"x = np.random.randint(low=5, high=100, size=15)\n",
118+
"y = np.random.randint(low=5, high=100 ,size=15)\n",
119+
"z = np.random.randint(low=5, high=100, size=15)\n",
120+
"\n",
121+
"fig = go.Figure()\n",
122+
"fig.add_trace(go.Scatter3d(x=x, y=y, z=z, mode=\"markers\"))"
123+
]
124+
},
125+
{
126+
"cell_type": "code",
127+
"execution_count": null,
128+
"metadata": {},
129+
"outputs": [],
130+
"source": [
131+
"df_iris = pd.read_csv(\"iris.csv\")"
132+
]
133+
},
134+
{
135+
"cell_type": "code",
136+
"execution_count": null,
137+
"metadata": {},
138+
"outputs": [],
139+
"source": [
140+
"fig = go.Figure()\n",
141+
"species_types = df_iris.species.unique().tolist()\n",
142+
"\n",
143+
"for specie in species_types:\n",
144+
" b = df_iris.species == specie\n",
145+
" fig.add_trace(go.Scatter3d(x=df_iris[\"sepal_length\"][b], y=df_iris[\"sepal_width\"][b], z=df_iris[\"petal_width\"][b], name=specie, mode=\"markers\"))\n",
146+
"\n",
147+
"\n",
148+
"fig.show()"
149+
]
150+
},
151+
{
152+
"cell_type": "code",
153+
"execution_count": null,
154+
"metadata": {},
155+
"outputs": [],
156+
"source": [
157+
"yf.pdr_override()\n",
158+
"\n",
159+
"symbols = [\"AAPL\",\"MSFT\"]\n",
160+
"stocks = []\n",
161+
"for symbol in symbols:\n",
162+
" stocks.append(pdr.get_data_yahoo(symbol, start=\"2020-01-01\", end=\"2020-05-31\"))"
163+
]
164+
},
165+
{
166+
"cell_type": "code",
167+
"execution_count": null,
168+
"metadata": {},
169+
"outputs": [],
170+
"source": [
171+
"fig = go.Figure()\n",
172+
"\n",
173+
"for stock,symbol in zip(stocks,symbols):\n",
174+
" fig.add_trace(go.Scatter(x=stock.index, y=stock.Close, name=symbol))\n",
175+
"\n",
176+
"fig.show()"
177+
]
178+
},
179+
{
180+
"cell_type": "code",
181+
"execution_count": null,
182+
"metadata": {},
183+
"outputs": [],
184+
"source": [
185+
"df_aapl = pdr.get_data_yahoo(symbol, start=\"2020-01-01\", end=\"2020-05-31\")"
186+
]
187+
},
188+
{
189+
"cell_type": "code",
190+
"execution_count": null,
191+
"metadata": {
192+
"scrolled": true
193+
},
194+
"outputs": [],
195+
"source": [
196+
"ff.create_candlestick(dates=df_aapl.index, open=df_aapl.Open, high=df_aapl.High, low=df_aapl.Low, close=df_aapl.Close)"
197+
]
198+
},
199+
{
200+
"cell_type": "code",
201+
"execution_count": null,
202+
"metadata": {},
203+
"outputs": [],
204+
"source": [
205+
"\n"
206+
]
207+
},
208+
{
209+
"cell_type": "code",
210+
"execution_count": null,
211+
"metadata": {},
212+
"outputs": [],
213+
"source": []
214+
}
215+
],
216+
"metadata": {
217+
"kernelspec": {
218+
"display_name": "Python 3",
219+
"language": "python",
220+
"name": "python3"
221+
},
222+
"language_info": {
223+
"codemirror_mode": {
224+
"name": "ipython",
225+
"version": 3
226+
},
227+
"file_extension": ".py",
228+
"mimetype": "text/x-python",
229+
"name": "python",
230+
"nbconvert_exporter": "python",
231+
"pygments_lexer": "ipython3",
232+
"version": "3.6.6"
233+
}
234+
},
235+
"nbformat": 4,
236+
"nbformat_minor": 4
237+
}
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
# [How to Create Plots With Plotly In Python](https://www.thepythoncode.com/article/creating-dynamic-plots-with-plotly-visualization-tool-in-python)
2+
To run this on a jupyter lab:
3+
- Install Jupyter Lab
4+
- Install plotly extension:
5+
```bash
6+
$ jupyter labextension install jupyterlab-plotly
7+
```
8+
- `pip3 install -r requirements.txt`

0 commit comments

Comments
 (0)