-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathvisualize.py
192 lines (158 loc) · 5.24 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import random
from itertools import product
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from .core import find_group_cohorts
def draw_mesh(
nrow,
ncol,
*,
draw_line_at=None,
nspaces=0,
space_at=0,
pxin=0.3,
counter=None,
colors=None,
randomize=True,
x0=0,
append=False,
):
dx = 2
xpts = x0 + np.arange(0, (ncol + nspaces) * dx, dx)
ypts = np.arange(0, nrow * dx, dx)
if colors is None:
colors = mpl.cm.Set2.colors[:4]
if not append:
plt.figure()
ax = plt.axes()
else:
ax = plt.gca()
ax.set_aspect(1)
ax.set_axis_off()
if not randomize:
colors = iter(colors)
icolor = -1
for n, (y, x) in enumerate(product(ypts, xpts)):
if space_at > 0 and (n % space_at) == 0:
continue
if randomize:
fcolor = random.choice(colors)
else:
fcolor = next(colors)
icolor += 1
if counter is not None:
counter[fcolor] += 1
ax.add_patch(
mpl.patches.Rectangle(
(x, y - 0.5 * dx),
dx,
dx,
edgecolor="w",
linewidth=1,
facecolor=fcolor,
)
)
if draw_line_at is not None and icolor > 0 and icolor % draw_line_at == 0:
plt.plot([x, x], [y - 0.75 * dx, y + 0.75 * dx], color="k", lw=2)
ax.set_xlim((0, max(xpts) + dx))
ax.set_ylim((-0.75 * dx, max(ypts) + 0.75 * dx))
if not append:
plt.gcf().set_size_inches((ncol * pxin, (nrow + 2) * pxin))
def visualize_groups_1d(array, labels, axis=-1, colors=None, cmap=None):
"""
Visualize group distribution for a 1D array of group labels.
"""
labels = np.asarray(labels)
assert labels.ndim == 1
factorized, unique_labels = pd.factorize(labels)
assert np.array(labels).ndim == 1
assert len(labels) == array.shape[axis]
chunks = array.chunks[axis]
if colors is None:
if cmap is None:
colors = list(mpl.cm.tab20.colors)
elif cmap is not None:
colors = [cmap((num - 1) / len(unique_labels)) for num in unique_labels]
if len(unique_labels) > len(colors):
raise ValueError("Not enough unique colors")
plt.figure()
i0 = 0
for i in chunks:
lab = factorized[i0 : i0 + i]
col = [colors[label] for label in lab] + [(1, 1, 1)]
draw_mesh(
1,
len(lab) + 1,
colors=col,
randomize=False,
append=True,
x0=i0 * 2.3, # + (i0 - 1) * 0.025,
)
i0 += i
pxin = 0.8
plt.gcf().set_size_inches((len(labels) * pxin, 1 * pxin))
def get_colormap(N):
cmap = mpl.cm.get_cmap("tab20_r").copy()
ncolors = len(cmap.colors)
q = N // ncolors
r = N % ncolors
cmap = mpl.colors.ListedColormap(np.concatenate([cmap.colors] * q + [cmap.colors[:r]]))
cmap.set_under(color="w")
return cmap
def factorize_cohorts(by, cohorts):
factorized = np.full(by.shape, -1)
for idx, cohort in enumerate(cohorts):
factorized[np.isin(by, cohort)] = idx
return factorized
def visualize_cohorts_2d(by, array, method="cohorts"):
assert by.ndim == 2
print("finding cohorts...")
before_merged = find_group_cohorts(
by, [array.chunks[ax] for ax in range(-by.ndim, 0)], merge=False, method=method
)
merged = find_group_cohorts(
by, [array.chunks[ax] for ax in range(-by.ndim, 0)], merge=True, method=method
)
print("finished cohorts...")
xticks = np.cumsum(array.chunks[-1])
yticks = np.cumsum(array.chunks[-2])
f, ax = plt.subplots(2, 2, constrained_layout=True, sharex=True, sharey=True)
ax = ax.ravel()
ax[1].set_visible(False)
ax = ax[[0, 2, 3]]
flat = by.ravel()
ngroups = len(np.unique(flat[~np.isnan(flat)]))
h0 = ax[0].imshow(by, cmap=get_colormap(ngroups))
h1 = ax[1].imshow(
factorize_cohorts(by, before_merged),
vmin=0,
cmap=get_colormap(len(before_merged)),
)
h2 = ax[2].imshow(factorize_cohorts(by, merged), vmin=0, cmap=get_colormap(len(merged)))
for axx in ax:
axx.grid(True, which="both")
axx.set_xticks(xticks)
axx.set_yticks(yticks)
for h, axx in zip([h0, h1, h2], ax):
f.colorbar(h, ax=axx, orientation="horizontal")
ax[0].set_title(f"by: {ngroups} groups")
ax[1].set_title(f"{len(before_merged)} cohorts")
ax[2].set_title(f"{len(merged)} merged cohorts")
f.set_size_inches((6, 6))
def visualize_groups_1d_long(array, labels, axis):
labels = np.asarray(labels)
assert labels.ndim == 1
factorized, unique_labels = pd.factorize(labels)
assert np.array(labels).ndim == 1
assert len(labels) == array.shape[axis]
chunks = array.chunks[axis]
idx = np.concatenate([np.concatenate([np.ones((c,)), np.array([np.nan])]) for c in chunks])[:-1]
labels_ = labels[np.nancumsum(idx).astype(int) - 1].astype(float)
labels_[np.isnan(idx)] = np.nan
ncol = 5 * (20 + 1)
extra = ncol - len(idx) % ncol
idx2d = np.pad(labels_, (0, extra), constant_values=np.nan).reshape(-1, ncol)
plt.figure()
plt.pcolormesh(idx2d, cmap=mpl.cm.Reds)