-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathfactorize.py
69 lines (54 loc) · 1.73 KB
/
factorize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python3
import numpy as np
import pandas as pd
from asv_runner.benchmarks.mark import parameterize
import flox
Nsmall = 4
Nlarge = 2000
class Factorize:
"""Time the core factorize_ function."""
def setup(self, *args, **kwargs):
raise NotImplementedError
@parameterize(
{
"expected": (None, (pd.Index([1, 3]),), (pd.RangeIndex(Nsmall),)),
"reindex": [True, False],
"sort": [True, False],
}
)
def time_factorize_small(self, expected, reindex, sort):
flox.core.factorize_(
self.by_small,
axes=(-1,),
expected_groups=expected,
reindex=reindex,
sort=sort,
)
@parameterize(
{
"expected": (None, (pd.Index([1, 3]),), (pd.RangeIndex(Nsmall),)),
"reindex": [True, False],
"sort": [True, False],
}
)
def time_factorize_large(self, expected, reindex, sort):
flox.core.factorize_(
self.by_large,
axes=(-1,),
expected_groups=None,
reindex=reindex,
sort=sort,
)
class SingleGrouper1D(Factorize):
def setup(self, *args, **kwargs):
self.by_small = (np.repeat(np.arange(Nsmall), 250),)
self.by_large = (np.random.permutation(np.arange(Nlarge)),)
class SingleGrouper3D(Factorize):
def setup(self, *args, **kwargs):
self.by_small = (np.broadcast_to(np.repeat(np.arange(Nsmall), 250), (5, 5, 1000)),)
self.by_large = (np.broadcast_to(np.random.permutation(np.arange(Nlarge)), (5, 5, Nlarge)),)
# class Multiple(Factorize):
# def setup(self, *args, **kwargs):
# pass
# class CFTimeFactorize(Factorize):
# pass