-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0120.cpp
125 lines (108 loc) · 3.05 KB
/
0120.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
class Solution {
public:
int minimumTotal(vector<vector<int>> &triangle) {
// return func1(triangle);
// return func2(triangle);
// return func3(triangle);
// return func4(triangle);
return func5(triangle);
}
// ** recursive
int func1(vector<vector<int>> &triangle) { return helper1(triangle, 0, 0); }
int helper1(vector<vector<int>> &triangle, int l, int c) {
if (l == triangle.size() - 1) {
return triangle[l][c];
}
int curr = triangle[l][c];
int lf = helper1(triangle, l + 1, c);
int rt = helper1(triangle, l + 1, c + 1);
return curr + min(lf, rt);
}
// ** recursive + memoization
int func2(vector<vector<int>> &triangle) {
int N = triangle.size();
vector<vector<int>> memo(N, vector<int>(N + 1, 0));
return helper2(triangle, 0, 0, memo);
}
int helper2(vector<vector<int>> &triangle, int l, int c,
vector<vector<int>> &memo) {
if (l == triangle.size() - 1) {
return triangle[l][c];
}
if (memo[l][c] != 0) {
return memo[l][c];
}
int curr = triangle[l][c];
int lf = helper2(triangle, l + 1, c, memo);
int rt = helper2(triangle, l + 1, c + 1, memo);
memo[l][c] = curr + min(lf, rt);
return memo[l][c];
}
// ** 2D array dp
int func3(vector<vector<int>> &triangle) {
int N = triangle.size();
if (N <= 0) {
return 0;
}
vector<vector<int>> dp(N, vector<int>(N + 1, 0));
dp[0][0] = triangle[0][0];
for (int l = 1; l < N; l++) {
for (int i = 0; i < l + 1; i++) {
dp[l][i] = triangle[l][i];
bool lfAncestor = i - 1 >= 0;
bool rtAncestor = i <= l - 1;
if (lfAncestor && rtAncestor) {
dp[l][i] += min(dp[l - 1][i - 1], dp[l - 1][i]);
} else if (lfAncestor) {
dp[l][i] += dp[l - 1][i - 1];
} else {
dp[l][i] += dp[l - 1][i];
}
}
}
int res = dp[N - 1][0];
for (int i = 0; i < N; i++) {
res = min(res, dp[N - 1][i]);
}
return res;
}
// ** basic 2D reduce to 1D according to 0/1 knapsack
int func4(vector<vector<int>> &triangle) {
int N = triangle.size();
if (N <= 0) {
return 0;
}
vector<int> dp(N, 0);
dp[0] = triangle[0][0];
for (int l = 1; l < N; l++) {
for (int i = l; i >= 0; i--) {
bool lfAncestor = i - 1 >= 0;
bool rtAncestor = i <= l - 1;
int anc = 0;
if (lfAncestor && rtAncestor) {
anc = min(dp[i - 1], dp[i]);
} else if (lfAncestor) {
anc = dp[i - 1];
} else {
anc = dp[i];
}
dp[i] = triangle[l][i] + anc;
}
}
int res = dp[0];
for (int i = 0; i < N; i++) {
res = min(res, dp[i]);
}
return res;
}
// ** https://github.com/soulmachine/leetcode
// ** as-short-as-possible
int func5(vector<vector<int>> &triangle) {
for (int i = triangle.size() - 2; i >= 0; --i) {
for (int j = 0; j < i + 1; ++j) {
triangle[i][j] += min(triangle[i + 1][j], triangle[i + 1][j + 1]);
}
}
return triangle[0][0];
}
};