We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
模型deploy如下: name: "ArcFace" layer { name: "data" type: "Data" top: "data" top: "label" include { phase: TRAIN } transform_param { resize_param { prob: 1 resize_mode: WARP height: 128 width: 128 interp_mode: LINEAR interp_mode: AREA interp_mode: CUBIC interp_mode: LANCZOS4 } mirror: True crop_h: 128 crop_w: 128 #distort_param { # brightness_prob: 0.5 # brightness_delta: 32 # contrast_prob: 0.5 # contrast_lower: 0.5 # contrast_upper: 1.5 # hue_prob: 0.5 # hue_delta: 18 # saturation_prob: 0.5 # saturation_lower: 0.5 # saturation_upper: 1.5 # random_order_prob: 0. #} } data_param { source: "/media/zz/7c333a37-0503-4f81-8103-0ef7e776f6fb/Face_Data/casia_extract_aligned_train_9204cls_lmdb" batch_size: 512 backend: LMDB } } layer { name: "data" type: "Data" top: "data" top: "label" include { phase: TEST } transform_param { resize_param { prob: 1 resize_mode: WARP height: 128 width: 128 interp_mode: LINEAR } crop_h: 128 crop_w: 128 } data_param { source: "/media/zz/7c333a37-0503-4f81-8103-0ef7e776f6fb/Face_Data/casia_extract_aligned_test_9204cls_lmdb" batch_size: 2 backend: LMDB } } ############## CNN Architecture ############### layer { name: "data/bias" type: "Bias" bottom: "data" top: "data/bias" param { lr_mult: 0 decay_mult: 0 } bias_param { filler { type: "constant" value: -128 } } } ################################################ layer { name: "conv1" type: "Convolution" bottom: "data/bias" top: "conv1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 7 pad: 3 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "conv1_bn" type: "BatchNorm" bottom: "conv1" top: "conv1" } layer { name: "conv1_scale" type: "Scale" bottom: "conv1" top: "conv1" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv1_relu" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "pool1" type: "Pooling" bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "pool1_1" type: "Pooling" bottom: "pool1" top: "pool1_1" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } layer { name: "conv2_1" type: "Convolution" bottom: "pool1_1" top: "conv2_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 32 kernel_size: 1 stride: 1 pad: 0 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "conv2_1_bn" type: "BatchNorm" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_1_scale" type: "Scale" bottom: "conv2_1" top: "conv2_1" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv2_1_relu" type: "ReLU" bottom: "conv2_1" top: "conv2_1" } layer { name: "conv2_2" type: "Convolution" bottom: "conv2_1" top: "conv2_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 3 stride: 1 pad: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "conv2_2_bn" type: "BatchNorm" bottom: "conv2_2" top: "conv2_2" } layer { name: "conv2_2_scale" type: "Scale" bottom: "conv2_2" top: "conv2_2" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv2_2_relu" type: "ReLU" bottom: "conv2_2" top: "conv2_2" } layer { name: "pool2" type: "Pooling" bottom: "conv2_2" top: "pool2" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } ############################################## layer { name: "conv3_1" type: "Convolution" bottom: "pool2" top: "conv3_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 64 kernel_size: 1 pad: 0 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "conv3_1_bn" type: "BatchNorm" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_1_scale" type: "Scale" bottom: "conv3_1" top: "conv3_1" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv3_1_relu" type: "ReLU" bottom: "conv3_1" top: "conv3_1" } layer { name: "conv3_2" type: "Convolution" bottom: "conv3_1" top: "conv3_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "conv3_2_bn" type: "BatchNorm" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv3_2_scale" type: "Scale" bottom: "conv3_2" top: "conv3_2" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv3_2_relu" type: "ReLU" bottom: "conv3_2" top: "conv3_2" } layer { name: "conv4_1" type: "Convolution" bottom: "conv3_2" top: "conv4_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 1 pad: 0 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "conv4_1_bn" type: "BatchNorm" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_1_scale" type: "Scale" bottom: "conv4_1" top: "conv4_1" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv4_1_relu" type: "ReLU" bottom: "conv4_1" top: "conv4_1" } layer { name: "conv4_2" type: "Convolution" bottom: "conv4_1" top: "conv4_2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 128 kernel_size: 3 pad: 1 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "conv4_2_bn" type: "BatchNorm" bottom: "conv4_2" top: "conv4_2" } layer { name: "conv4_2_scale" type: "Scale" bottom: "conv4_2" top: "conv4_2" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv4_2_relu" type: "ReLU" bottom: "conv4_2" top: "conv4_2" } ################################################ layer { name: "conv5_1" type: "Convolution" bottom: "conv4_2" top: "conv5_1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } convolution_param { num_output: 96 kernel_size: 1 pad: 0 stride: 1 weight_filler { type: "gaussian" std: 0.01 } bias_filler { type: "constant" value: 0 } } } layer { name: "conv5_1_bn" type: "BatchNorm" bottom: "conv5_1" top: "conv5_1" } layer { name: "conv5_1_scale" type: "Scale" bottom: "conv5_1" top: "conv5_1" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "conv5_1_relu" type: "ReLU" bottom: "conv5_1" top: "conv5_1" } layer { name: "pool3" type: "Pooling" bottom: "conv5_1" top: "pool3" pooling_param { pool: MAX kernel_size: 2 stride: 2 } } ######################################### ######################################### layer { name: "fc1" type: "InnerProduct" bottom: "pool3" top: "fc1" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 1024 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "fc1_bn" type: "BatchNorm" bottom: "fc1" top: "fc1" } layer { name: "fc1_scale" type: "Scale" bottom: "fc1" top: "fc1" scale_param { filler { value: 1 } bias_term: true bias_filler { value: 0 } } } layer { name: "fc1_relu" type: "ReLU" bottom: "fc1" top: "fc1" } layer { name: "fc2" type: "InnerProduct" bottom: "fc1" top: "fc2" param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0 } inner_product_param { num_output: 128 weight_filler { type: "xavier" } bias_filler { type: "constant" value: 0 } } } layer { name: "fc2_norm" type: "NormalizeJin" bottom: "fc2" top: "fc2_norm" norm_jin_param { across_spatial: true scale_filler { type: "constant" value: 1.0 } channel_shared: true } } ############### Arc-Softmax Loss ##############
layer { name: "fc6_changed" type: "InnerProduct" bottom: "fc2_norm" top: "fc6" inner_product_param { num_output: 9204 normalize: true weight_filler { type: "xavier" } bias_term: false } } #################################################### layer { name: "cosin_add_m" type: "CosinAddm" bottom: "fc6" bottom: "label" top: "fc6_margin" cosin_add_m_param { m: 0.1 } include { phase: TRAIN } }
layer { name: "fc6_margin_scale" type: "Scale" bottom: "fc6_margin" top: "fc6_margin_scale" param { lr_mult: 0 decay_mult: 0 } scale_param { filler{ type: "constant" value: 64 } } include { phase: TRAIN } }
###################################################### layer { name: "softmax_loss" type: "SoftmaxWithLoss" bottom: "fc6_margin_scale" bottom: "label" #bottom: "label" #bottom: "data" top: "softmax_loss" loss_weight: 1 include { phase: TRAIN } }
layer { name: "Accuracy" type: "Accuracy" bottom: "fc6" bottom: "label" top: "accuracy" include { phase: TEST } }
loss损失如下: I0627 17:38:58.567371 6757 solver.cpp:224] Iteration 450 (2.13816 iter/s, 4.67691s/10 iters), loss = 87.3365 I0627 17:38:58.567402 6757 solver.cpp:243] Train net output #0: softmax_loss = 87.3365 (* 1 = 87.3365 loss) I0627 17:38:58.567409 6757 sgd_solver.cpp:137] Iteration 450, lr = 0.00314 I0627 17:39:03.256306 6757 solver.cpp:224] Iteration 460 (2.13288 iter/s, 4.6885s/10 iters), loss = 87.3365 I0627 17:39:03.256340 6757 solver.cpp:243] Train net output #0: softmax_loss = 87.3365 (* 1 = 87.3365 loss) I0627 17:39:03.256347 6757 sgd_solver.cpp:137] Iteration 460, lr = 0.00314 I0627 17:39:07.941520 6757 solver.cpp:224] Iteration 470 (2.13457 iter/s, 4.68478s/10 iters), loss = 87.3365 I0627 17:39:07.941551 6757 solver.cpp:243] Train net output #0: softmax_loss = 87.3365 (* 1 = 87.3365 loss) I0627 17:39:07.941558 6757 sgd_solver.cpp:137] Iteration 470, lr = 0.00314 I0627 17:39:12.623337 6757 solver.cpp:224] Iteration 480 (2.13612 iter/s, 4.68139s/10 iters), loss = 87.3365 I0627 17:39:12.623456 6757 solver.cpp:243] Train net output #0: softmax_loss = 87.3365 (* 1 = 87.3365 loss) 请问该如何修改?
The text was updated successfully, but these errors were encountered:
请问你解决这个问题了吗
Sorry, something went wrong.
同样的问题啊
在solver.prototxt中的learning rate調低試試看,我自己是用0.0005或是0.0001可以正常收斂
No branches or pull requests
模型deploy如下:
name: "ArcFace"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
resize_param {
prob: 1
resize_mode: WARP
height: 128
width: 128
interp_mode: LINEAR
interp_mode: AREA
interp_mode: CUBIC
interp_mode: LANCZOS4
}
mirror: True
crop_h: 128
crop_w: 128
#distort_param {
# brightness_prob: 0.5
# brightness_delta: 32
# contrast_prob: 0.5
# contrast_lower: 0.5
# contrast_upper: 1.5
# hue_prob: 0.5
# hue_delta: 18
# saturation_prob: 0.5
# saturation_lower: 0.5
# saturation_upper: 1.5
# random_order_prob: 0.
#}
}
data_param {
source: "/media/zz/7c333a37-0503-4f81-8103-0ef7e776f6fb/Face_Data/casia_extract_aligned_train_9204cls_lmdb"
batch_size: 512
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
resize_param {
prob: 1
resize_mode: WARP
height: 128
width: 128
interp_mode: LINEAR
}
crop_h: 128
crop_w: 128
}
data_param {
source: "/media/zz/7c333a37-0503-4f81-8103-0ef7e776f6fb/Face_Data/casia_extract_aligned_test_9204cls_lmdb"
batch_size: 2
backend: LMDB
}
}
############## CNN Architecture ###############
layer {
name: "data/bias"
type: "Bias"
bottom: "data"
top: "data/bias"
param {
lr_mult: 0
decay_mult: 0
}
bias_param {
filler {
type: "constant"
value: -128
}
}
}
################################################
layer {
name: "conv1"
type: "Convolution"
bottom: "data/bias"
top: "conv1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 7
pad: 3
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv1_bn"
type: "BatchNorm"
bottom: "conv1"
top: "conv1"
}
layer {
name: "conv1_scale"
type: "Scale"
bottom: "conv1"
top: "conv1"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv1_relu"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "pool1_1"
type: "Pooling"
bottom: "pool1"
top: "pool1_1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "conv2_1"
type: "Convolution"
bottom: "pool1_1"
top: "conv2_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 32
kernel_size: 1
stride: 1
pad: 0
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv2_1_bn"
type: "BatchNorm"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_1_scale"
type: "Scale"
bottom: "conv2_1"
top: "conv2_1"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2_1_relu"
type: "ReLU"
bottom: "conv2_1"
top: "conv2_1"
}
layer {
name: "conv2_2"
type: "Convolution"
bottom: "conv2_1"
top: "conv2_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 3
stride: 1
pad: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv2_2_bn"
type: "BatchNorm"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "conv2_2_scale"
type: "Scale"
bottom: "conv2_2"
top: "conv2_2"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv2_2_relu"
type: "ReLU"
bottom: "conv2_2"
top: "conv2_2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2_2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
##############################################
layer {
name: "conv3_1"
type: "Convolution"
bottom: "pool2"
top: "conv3_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 64
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv3_1_bn"
type: "BatchNorm"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_1_scale"
type: "Scale"
bottom: "conv3_1"
top: "conv3_1"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3_1_relu"
type: "ReLU"
bottom: "conv3_1"
top: "conv3_1"
}
layer {
name: "conv3_2"
type: "Convolution"
bottom: "conv3_1"
top: "conv3_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv3_2_bn"
type: "BatchNorm"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv3_2_scale"
type: "Scale"
bottom: "conv3_2"
top: "conv3_2"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv3_2_relu"
type: "ReLU"
bottom: "conv3_2"
top: "conv3_2"
}
layer {
name: "conv4_1"
type: "Convolution"
bottom: "conv3_2"
top: "conv4_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv4_1_bn"
type: "BatchNorm"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_1_scale"
type: "Scale"
bottom: "conv4_1"
top: "conv4_1"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4_1_relu"
type: "ReLU"
bottom: "conv4_1"
top: "conv4_1"
}
layer {
name: "conv4_2"
type: "Convolution"
bottom: "conv4_1"
top: "conv4_2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 128
kernel_size: 3
pad: 1
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv4_2_bn"
type: "BatchNorm"
bottom: "conv4_2"
top: "conv4_2"
}
layer {
name: "conv4_2_scale"
type: "Scale"
bottom: "conv4_2"
top: "conv4_2"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv4_2_relu"
type: "ReLU"
bottom: "conv4_2"
top: "conv4_2"
}
################################################
layer {
name: "conv5_1"
type: "Convolution"
bottom: "conv4_2"
top: "conv5_1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
convolution_param {
num_output: 96
kernel_size: 1
pad: 0
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "conv5_1_bn"
type: "BatchNorm"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "conv5_1_scale"
type: "Scale"
bottom: "conv5_1"
top: "conv5_1"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "conv5_1_relu"
type: "ReLU"
bottom: "conv5_1"
top: "conv5_1"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv5_1"
top: "pool3"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
#########################################
#########################################
layer {
name: "fc1"
type: "InnerProduct"
bottom: "pool3"
top: "fc1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1024
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "fc1_bn"
type: "BatchNorm"
bottom: "fc1"
top: "fc1"
}
layer {
name: "fc1_scale"
type: "Scale"
bottom: "fc1"
top: "fc1"
scale_param {
filler {
value: 1
}
bias_term: true
bias_filler {
value: 0
}
}
}
layer {
name: "fc1_relu"
type: "ReLU"
bottom: "fc1"
top: "fc1"
}
layer {
name: "fc2"
type: "InnerProduct"
bottom: "fc1"
top: "fc2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 128
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "fc2_norm"
type: "NormalizeJin"
bottom: "fc2"
top: "fc2_norm"
norm_jin_param {
across_spatial: true
scale_filler {
type: "constant"
value: 1.0
}
channel_shared: true
}
}
############### Arc-Softmax Loss ##############
layer {
name: "fc6_changed"
type: "InnerProduct"
bottom: "fc2_norm"
top: "fc6"
inner_product_param {
num_output: 9204
normalize: true
weight_filler {
type: "xavier"
}
bias_term: false
}
}
####################################################
layer {
name: "cosin_add_m"
type: "CosinAddm"
bottom: "fc6"
bottom: "label"
top: "fc6_margin"
cosin_add_m_param {
m: 0.1
}
include {
phase: TRAIN
}
}
layer {
name: "fc6_margin_scale"
type: "Scale"
bottom: "fc6_margin"
top: "fc6_margin_scale"
param {
lr_mult: 0
decay_mult: 0
}
scale_param {
filler{
type: "constant"
value: 64
}
}
include {
phase: TRAIN
}
}
######################################################
layer {
name: "softmax_loss"
type: "SoftmaxWithLoss"
bottom: "fc6_margin_scale"
bottom: "label"
#bottom: "label"
#bottom: "data"
top: "softmax_loss"
loss_weight: 1
include {
phase: TRAIN
}
}
layer {
name: "Accuracy"
type: "Accuracy"
bottom: "fc6"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
loss损失如下:
I0627 17:38:58.567371 6757 solver.cpp:224] Iteration 450 (2.13816 iter/s, 4.67691s/10 iters), loss = 87.3365
I0627 17:38:58.567402 6757 solver.cpp:243] Train net output #0: softmax_loss = 87.3365 (* 1 = 87.3365 loss)
I0627 17:38:58.567409 6757 sgd_solver.cpp:137] Iteration 450, lr = 0.00314
I0627 17:39:03.256306 6757 solver.cpp:224] Iteration 460 (2.13288 iter/s, 4.6885s/10 iters), loss = 87.3365
I0627 17:39:03.256340 6757 solver.cpp:243] Train net output #0: softmax_loss = 87.3365 (* 1 = 87.3365 loss)
I0627 17:39:03.256347 6757 sgd_solver.cpp:137] Iteration 460, lr = 0.00314
I0627 17:39:07.941520 6757 solver.cpp:224] Iteration 470 (2.13457 iter/s, 4.68478s/10 iters), loss = 87.3365
I0627 17:39:07.941551 6757 solver.cpp:243] Train net output #0: softmax_loss = 87.3365 (* 1 = 87.3365 loss)
I0627 17:39:07.941558 6757 sgd_solver.cpp:137] Iteration 470, lr = 0.00314
I0627 17:39:12.623337 6757 solver.cpp:224] Iteration 480 (2.13612 iter/s, 4.68139s/10 iters), loss = 87.3365
I0627 17:39:12.623456 6757 solver.cpp:243] Train net output #0: softmax_loss = 87.3365 (* 1 = 87.3365 loss)
请问该如何修改?
The text was updated successfully, but these errors were encountered: