-
Notifications
You must be signed in to change notification settings - Fork 772
/
Copy pathMobileNet.py
169 lines (152 loc) · 8.39 KB
/
MobileNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
2017/11/24 ref:https://github.com/Zehaos/MobileNet/blob/master/nets/mobilenet.py
"""
import tensorflow as tf
from tensorflow.python.training import moving_averages
UPDATE_OPS_COLLECTION = "_update_ops_"
# create variable
def create_variable(name, shape, initializer,
dtype=tf.float32, trainable=True):
return tf.get_variable(name, shape=shape, dtype=dtype,
initializer=initializer, trainable=trainable)
# batchnorm layer
def bacthnorm(inputs, scope, epsilon=1e-05, momentum=0.99, is_training=True):
inputs_shape = inputs.get_shape().as_list()
params_shape = inputs_shape[-1:]
axis = list(range(len(inputs_shape) - 1))
with tf.variable_scope(scope):
beta = create_variable("beta", params_shape,
initializer=tf.zeros_initializer())
gamma = create_variable("gamma", params_shape,
initializer=tf.ones_initializer())
# for inference
moving_mean = create_variable("moving_mean", params_shape,
initializer=tf.zeros_initializer(), trainable=False)
moving_variance = create_variable("moving_variance", params_shape,
initializer=tf.ones_initializer(), trainable=False)
if is_training:
mean, variance = tf.nn.moments(inputs, axes=axis)
update_move_mean = moving_averages.assign_moving_average(moving_mean,
mean, decay=momentum)
update_move_variance = moving_averages.assign_moving_average(moving_variance,
variance, decay=momentum)
tf.add_to_collection(UPDATE_OPS_COLLECTION, update_move_mean)
tf.add_to_collection(UPDATE_OPS_COLLECTION, update_move_variance)
else:
mean, variance = moving_mean, moving_variance
return tf.nn.batch_normalization(inputs, mean, variance, beta, gamma, epsilon)
# depthwise conv2d layer
def depthwise_conv2d(inputs, scope, filter_size=3, channel_multiplier=1, strides=1):
inputs_shape = inputs.get_shape().as_list()
in_channels = inputs_shape[-1]
with tf.variable_scope(scope):
filter = create_variable("filter", shape=[filter_size, filter_size,
in_channels, channel_multiplier],
initializer=tf.truncated_normal_initializer(stddev=0.01))
return tf.nn.depthwise_conv2d(inputs, filter, strides=[1, strides, strides, 1],
padding="SAME", rate=[1, 1])
# conv2d layer
def conv2d(inputs, scope, num_filters, filter_size=1, strides=1):
inputs_shape = inputs.get_shape().as_list()
in_channels = inputs_shape[-1]
with tf.variable_scope(scope):
filter = create_variable("filter", shape=[filter_size, filter_size,
in_channels, num_filters],
initializer=tf.truncated_normal_initializer(stddev=0.01))
return tf.nn.conv2d(inputs, filter, strides=[1, strides, strides, 1],
padding="SAME")
# avg pool layer
def avg_pool(inputs, pool_size, scope):
with tf.variable_scope(scope):
return tf.nn.avg_pool(inputs, [1, pool_size, pool_size, 1],
strides=[1, pool_size, pool_size, 1], padding="VALID")
# fully connected layer
def fc(inputs, n_out, scope, use_bias=True):
inputs_shape = inputs.get_shape().as_list()
n_in = inputs_shape[-1]
with tf.variable_scope(scope):
weight = create_variable("weight", shape=[n_in, n_out],
initializer=tf.random_normal_initializer(stddev=0.01))
if use_bias:
bias = create_variable("bias", shape=[n_out,],
initializer=tf.zeros_initializer())
return tf.nn.xw_plus_b(inputs, weight, bias)
return tf.matmul(inputs, weight)
class MobileNet(object):
def __init__(self, inputs, num_classes=1000, is_training=True,
width_multiplier=1, scope="MobileNet"):
"""
The implement of MobileNet(ref:https://arxiv.org/abs/1704.04861)
:param inputs: 4-D Tensor of [batch_size, height, width, channels]
:param num_classes: number of classes
:param is_training: Boolean, whether or not the model is training
:param width_multiplier: float, controls the size of model
:param scope: Optional scope for variables
"""
self.inputs = inputs
self.num_classes = num_classes
self.is_training = is_training
self.width_multiplier = width_multiplier
# construct model
with tf.variable_scope(scope):
# conv1
net = conv2d(inputs, "conv_1", round(32 * width_multiplier), filter_size=3,
strides=2) # ->[N, 112, 112, 32]
net = tf.nn.relu(bacthnorm(net, "conv_1/bn", is_training=self.is_training))
net = self._depthwise_separable_conv2d(net, 64, self.width_multiplier,
"ds_conv_2") # ->[N, 112, 112, 64]
net = self._depthwise_separable_conv2d(net, 128, self.width_multiplier,
"ds_conv_3", downsample=True) # ->[N, 56, 56, 128]
net = self._depthwise_separable_conv2d(net, 128, self.width_multiplier,
"ds_conv_4") # ->[N, 56, 56, 128]
net = self._depthwise_separable_conv2d(net, 256, self.width_multiplier,
"ds_conv_5", downsample=True) # ->[N, 28, 28, 256]
net = self._depthwise_separable_conv2d(net, 256, self.width_multiplier,
"ds_conv_6") # ->[N, 28, 28, 256]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_7", downsample=True) # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_8") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_9") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_10") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_11") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 512, self.width_multiplier,
"ds_conv_12") # ->[N, 14, 14, 512]
net = self._depthwise_separable_conv2d(net, 1024, self.width_multiplier,
"ds_conv_13", downsample=True) # ->[N, 7, 7, 1024]
net = self._depthwise_separable_conv2d(net, 1024, self.width_multiplier,
"ds_conv_14") # ->[N, 7, 7, 1024]
net = avg_pool(net, 7, "avg_pool_15")
net = tf.squeeze(net, [1, 2], name="SpatialSqueeze")
self.logits = fc(net, self.num_classes, "fc_16")
self.predictions = tf.nn.softmax(self.logits)
def _depthwise_separable_conv2d(self, inputs, num_filters, width_multiplier,
scope, downsample=False):
"""depthwise separable convolution 2D function"""
num_filters = round(num_filters * width_multiplier)
strides = 2 if downsample else 1
with tf.variable_scope(scope):
# depthwise conv2d
dw_conv = depthwise_conv2d(inputs, "depthwise_conv", strides=strides)
# batchnorm
bn = bacthnorm(dw_conv, "dw_bn", is_training=self.is_training)
# relu
relu = tf.nn.relu(bn)
# pointwise conv2d (1x1)
pw_conv = conv2d(relu, "pointwise_conv", num_filters)
# bn
bn = bacthnorm(pw_conv, "pw_bn", is_training=self.is_training)
return tf.nn.relu(bn)
if __name__ == "__main__":
# test data
inputs = tf.random_normal(shape=[4, 224, 224, 3])
mobileNet = MobileNet(inputs)
writer = tf.summary.FileWriter("./logs", graph=tf.get_default_graph())
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
pred = sess.run(mobileNet.predictions)
print(pred.shape)