-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
415 lines (322 loc) · 13.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
# 加载Python自带 或通过pip安装的模块
import jieba
import json
# 加载用户自己的模块
#from example_module import foo
# ----------------------------------------
# # 本地调试时使用的路径配置
inp_path = 'benchmark_texts.txt'
out_path = 'adversarial.txt'
# ----------------------------------------
# ----------------------------------------
# 提交时使用的路径配置(提交时请激活)
# inp_path = '/tcdata/benchmark_texts.txt'
# out_path = 'adversarial.txt'
# ----------------------------------------
print('here is 2020 3 6 12.37')
# ----------------------------------------
# function of self defination
def tokenize(text):
return ' '.join(jieba.cut(text))
#-----------------------------------------
#-----------------------------------------
import fasttext
def reference_model(model, test_args):
"""
调用参考模型; 需要fasttext
"""
if test_args:
y_label, Fy = model.predict(test_args)
if(y_label[0] == '__label__0'):
Fy[0] = 1-Fy[0]
return float(Fy[0])
else:
return 0
#----------------------------------------
#----------------------------------------
with open('./stopwords/中文停用词表.txt','r',encoding='UTF-8') as c:
stop_words_chinese = c.readlines()
with open('./stopwords/哈工大停用词表.txt', 'r',encoding='UTF-8') as c:
stop_words_hit = c.readlines()
with open('./stopwords/四川大学机器智能实验室停用词库.txt', 'r',encoding='UTF-8') as c:
stop_words_scu = c.readlines()
with open('./stopwords/百度停用词表.txt', 'r',encoding='UTF-8') as c:
stop_words_baidu = c.readlines()
stop_words = []
set_stop_words = [stop_words_chinese, stop_words_hit, stop_words_scu, stop_words_baidu]
for m_stop in set_stop_words:
for m_s in m_stop:
m_s = m_s.strip()
if m_s not in stop_words:
stop_words.append(m_s)
# print((stop_words))
#-----------------------------------------
#----------------------------------------
#tfidf score of word
#-----------------------------------------
def tfidf_score_of_word(corpus):
corpus = [tokenize(line) for line in corpus]
import numpy as np
from sklearn import feature_extraction
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
vectorizer = CountVectorizer(token_pattern='[\u4e00-\u9fa5_a-zA-Z0-9]{1,}')
X = vectorizer.fit_transform(corpus)
word_features = vectorizer.get_feature_names()
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(X)
tfidf_standard = tfidf/np.max(tfidf)
tf_idf_score = []
for i, sen in enumerate(corpus):
word_list = sen.split(' ')
temp = []
for word in word_list:
if(word in word_features):
temp.append(tfidf_standard[i,word_features.index(word)])
else:
temp.append(0)
tf_idf_score.append(temp)
return tf_idf_score
# tfidf_score_of_word(corpus)
#-----------------------------------------
#important word
with open('./stopwords/important_words.txt', 'r', encoding='utf-8') as c:
important_words = c.readlines()[0].strip().split()
# print(important_words)
#-----------------------------------------
#----------------------------------------
#-----------------------------------------
def calculate_importance_of_word(model, Fy_all, list_of_word, i, weight=0.5):
temp = list_of_word.copy()
# if temp[i] in important_words:
# return 1
# if temp[i] in stop_words:
# # print(temp[i])
# return 0
if i == 0:
forward_score = 0
backward_score = 0
else:
forward_score = reference_model(model, ''.join(temp[0:i+1])) - reference_model(model, ''.join(temp[0:i]))
backward_score = reference_model(model, ''.join(temp[i:])) - reference_model(model, ''.join(temp[i+1:]))
temp.pop(i)
delete_score = Fy_all - reference_model(model, ''.join(temp))
return delete_score*weight + forward_score*(1-weight)/2 + backward_score*(1-weight)/2
model_path = 'reference_model/mini.ftz'
model = fasttext.load_model(model_path)
# caculate the importance of word to the sentence
def importance(list_of_texts, tf_idf_score):
tokenized_text = tokenize(list_of_texts)
list_of_word = tokenized_text.strip().split(' ')
scores = []
Fy_all = reference_model(model, [''.join(list_of_word)])
# print('label------', Fy_all, '----sentence----- ', list_of_word)
for i in range(len(list_of_word)):
if len(list_of_word) == 1:
scores.append(Fy_all)
continue
else:
scores.append(calculate_importance_of_word(model, Fy_all, list_of_word, i)*0.8+tf_idf_score[i]*0.2)
return scores
#-----------------------------------------
#-----------------------------------------
#caculate similarity between string a and
# string b
#-----------------------------------------
from distance_module import DistanceCalculator
g_dc = DistanceCalculator() # avoid loading WORD2vec many times
def distance_measure(dc ,test_args=(['你好呀'], ['你好呀'])):
"""
调用距离计算器; 需要gensim, numpy
"""
similarity_dic = dc(*test_args)
score_levenshtein = 3/14.0 * ( 1 - similarity_dic['normalized_levenshtein'][0])
score_jaccard_word = 1/7.0 * (1 - similarity_dic['jaccard_word'][0])
score_jaccard_char = 3/14.0 * (1 - similarity_dic['jaccard_char'][0])
score_embedding_cosine = 3/7.0 * (1 - similarity_dic['embedding_cosine'][0])
score_similarity = score_levenshtein + score_jaccard_word + score_jaccard_char + score_embedding_cosine
# print('----Distance measure----')
# print(*test_args, score_similarity, similarity_dic)
return score_similarity
#-----------------------------------------
#-----------------------------------------
# use greedy algorithm
#-----------------------------------------
import copy
def calculate_similarity(target_text, index, list_of_texts, hanzi_of_target_test, gedit_text, black_list_word):
original_word_target = copy.deepcopy(target_text[index])
m_destination_word = copy.deepcopy(target_text[index])
m_similarity_max = 0
for m_hanzi_target in hanzi_of_target_test:
if (''.join(m_hanzi_target.path) in black_list_word) or ''.join(m_hanzi_target.path) == original_word_target: # avoid changing the pinyin to the originnal word
# print(' the two is same')
continue
target_text[index] = ''.join(m_hanzi_target.path)
gedit_text = ''.join(target_text)
test_args = ([gedit_text], [list_of_texts])
m_similarity_socre = distance_measure(g_dc, test_args)
if m_similarity_socre >= m_similarity_max and ''.join(m_hanzi_target.path):
m_destination_word = ''.join(m_hanzi_target.path)
m_similarity_max = m_similarity_socre
# print('score ---------', m_similarity_socre)
return m_destination_word
#-----------------------------------------
import heapq
from pypinyin import lazy_pinyin
from Pinyin2Hanzi import DefaultHmmParams
from Pinyin2Hanzi import viterbi
import random
def is_Chinese(word):
for ch in word:
if '\u4e00' <= ch <= '\u9fff':
return True
return False
def top_k_transform(importance_score, list_of_texts, porpotion, new_word_dictionary, black_list_word):
hmmparams = DefaultHmmParams() # HMM pinyin2hanzi
target_text = list_of_texts
target_text = tokenize(target_text).split(' ')
k = int(len(target_text)*porpotion) + 1
top_k_score = heapq.nlargest(k, importance_score)
top_k_score_index = [importance_score.index(score) for score in top_k_score]
for index in top_k_score_index:
# make a virables repsent modified list_of_text
gedit_text = copy.deepcopy(list_of_texts)
if(is_Chinese(target_text[index])):
pinyin_of_target_text = lazy_pinyin(target_text[index])
if pinyin_of_target_text == ['ni']:
pinyin_of_target_text = random.choice([['li'], ['ni']])
if pinyin_of_target_text == ['ta']:
pinyin_of_target_text = random.choice([['ta'], ['te']])
if pinyin_of_target_text == ['cao']:
pinyin_of_target_text = random.choice([['ca'], ['cao']])
if pinyin_of_target_text == ['ma']:
pinyin_of_target_text = random.choice([['me'], ['ma']])
if pinyin_of_target_text == ['si']:
pinyin_of_target_text = random.choice([['shi'], ['si']])
try:
#pinyin to other Chinese
hanzi_of_target_test = viterbi(hmm_params=hmmparams, observations=pinyin_of_target_text, path_num = 10)
# choose a word randly
# target_text[index] = ''.join(random.choice(hanzi_of_target_test).path)
# caculate the similarity between original word and transferable word
# use greedy algorithm
m_destination_word = calculate_similarity(target_text, index, list_of_texts[i], hanzi_of_target_test, gedit_text, black_list_word)
target_text[index] = m_destination_word
list_of_texts = ''.join(target_text)
# 加入新词字典
temp = new_word_dictionary.get(m_destination_word,0)
temp += 1
# 如果这个新词已经出现了10次,那么把它加到黑名单里
if(temp < 20):
new_word_dictionary[m_destination_word] = temp
else:
new_word_dictionary.pop(m_destination_word)
black_list_word.append(m_destination_word)
except:
pass
else:
continue
return list_of_texts
#---------------------------------------------------------
with open(inp_path, 'r', encoding='UTF-8') as f:
inp_lines = f.readlines()
dict_word = {
'ni': ['你', '祢', '妳', '你', '妮', '你', '鉨', '您', '你', 'ni', '伱'],
# 'zi': ['仔', '籽', '秄', '耔', '釨', '子', '子'],
# 'bi': ['比', '必', '毕', '鼻', '逼'],
# 'biao': ['表', '裱', '俵'],
# 'gou': ['苟', '枸'],
# 'si': ['死', '挂'],
# 'cao': ['肏', '擦', '艹']
}
def transform(line, tf_idf_score, new_word_dictionary, black_list_word):
"""转换一行文本。
:param line: 对抗攻击前的输入文本
:type line: str
:returns: str -- 对抗攻击后的输出文门
"""
# 修改以下逻辑
from preprocessing_module import preprocess_text
preprocess_text(line)
# 选择修改文本的比例
a = random.choice([1, 0, 2, 5, 4])
if a >= 6:
return line
hmmparams = DefaultHmmParams() # HMM pinyin2hanzi
#进行重要度排序,得出每个词的辱骂性质的分数
imp_score = importance(line, tf_idf_score)
#修改一定比例的词语, 当比例为0时,最低为一个
out_line = top_k_transform(imp_score, line, 0, new_word_dictionary, black_list_word)
out_line = "".join(out_line)
out_line = out_line.replace('\n', '')
m_line = tokenize(out_line)
_list_m_line = []
for _word in m_line:
_list_m_line.append(_word)
#将“你”这个字进行替换
for i, m_word in enumerate(m_line):
if m_word in important_words:
hanzi_of_target_test = ''
pinyin_of_target_text = lazy_pinyin(m_word)
if pinyin_of_target_text == ['ni']:
hanzi_of_target_test = dict_word['ni']
else:
continue
m_destination_word = m_word
# pinyin to other Chinese
nums_circle = 0
#选择一个汉字原始汉字不同且不在黑名单里
while nums_circle <= 50:
nums_circle += 1
m_destination_word = random.choice(hanzi_of_target_test)
if m_destination_word != m_word and m_destination_word not in black_list_word:
break
else:
continue
_list_m_line[i] = m_destination_word
m_line = ''.join(_list_m_line)
temp = new_word_dictionary.get(m_destination_word, 0)
temp += 1
# 如果这个新词已经出现了30次,那么把它加到黑名单里
if (temp < 30):
new_word_dictionary[m_destination_word] = temp
else:
new_word_dictionary.pop(m_destination_word)
black_list_word.append(m_destination_word)
out_line = m_line.split()
out_line = ''.join(out_line)
_line = out_line
str_dot = ''
#求出最起始比例
_ori_pro = reference_model(model, _line)
_nums = 0
#在句子末尾加逗号,至多50个,(当前概率-原始概率)/原始概率>0.8时停止
for i in range(50):
_line += ','
_nums += 1
_pre_pro = reference_model(model, _line)
if abs(_pre_pro - _ori_pro)/_ori_pro > 0.8:
break
out_line = _line + str_dot
print('outline,', out_line)
return out_line
import time
start = time.clock()
#当中是你的程序
from preprocessing_module import preprocess_text
benchmark_text = [preprocess_text(_line) for _line in inp_lines]
tf_idf_score = tfidf_score_of_word(benchmark_text)
new_word_dictionary = {}
out_lines = []
black_list_word = []
for i, sen in enumerate(benchmark_text):
out_lines.append(transform(sen, tf_idf_score[i], new_word_dictionary, black_list_word))
# out_lines = [transform(sen, tf_idf_score, new_word_dictionary) for sen in benchmark_text]
with open('my.txt', 'w', encoding='utf-8') as w:
for m_line in out_lines:
w.writelines(m_line + '\n')
target = json.dumps({'text': out_lines}, ensure_ascii=False)
with open(out_path, 'w' ,encoding='UTF-8') as f:
f.write(target)
elapsed = (time.clock() - start)
print("Time used:", elapsed)