-
Notifications
You must be signed in to change notification settings - Fork 259
/
Copy pathlogexp.rs
360 lines (342 loc) · 10.7 KB
/
logexp.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Copyright (c) 2019-2022, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.
/// Convert an integer into a Q57 fixed-point fraction.
pub const fn q57(v: i32) -> i64 {
debug_assert!(v >= -64 && v <= 63);
(v as i64) << 57
}
#[rustfmt::skip]
const ATANH_LOG2: &[i64; 32] = &[
0x32B803473F7AD0F4, 0x2F2A71BD4E25E916, 0x2E68B244BB93BA06,
0x2E39FB9198CE62E4, 0x2E2E683F68565C8F, 0x2E2B850BE2077FC1,
0x2E2ACC58FE7B78DB, 0x2E2A9E2DE52FD5F2, 0x2E2A92A338D53EEC,
0x2E2A8FC08F5E19B6, 0x2E2A8F07E51A485E, 0x2E2A8ED9BA8AF388,
0x2E2A8ECE2FE7384A, 0x2E2A8ECB4D3E4B1A, 0x2E2A8ECA94940FE8,
0x2E2A8ECA6669811D, 0x2E2A8ECA5ADEDD6A, 0x2E2A8ECA57FC347E,
0x2E2A8ECA57438A43, 0x2E2A8ECA57155FB4, 0x2E2A8ECA5709D510,
0x2E2A8ECA5706F267, 0x2E2A8ECA570639BD, 0x2E2A8ECA57060B92,
0x2E2A8ECA57060008, 0x2E2A8ECA5705FD25, 0x2E2A8ECA5705FC6C,
0x2E2A8ECA5705FC3E, 0x2E2A8ECA5705FC33, 0x2E2A8ECA5705FC30,
0x2E2A8ECA5705FC2F, 0x2E2A8ECA5705FC2F
];
/// Computes the binary exponential of `logq57`.
/// `logq57`: a log base 2 in Q57 format.
/// Returns a 64 bit integer in Q0 (no fraction).
pub const fn bexp64(logq57: i64) -> i64 {
let ipart = (logq57 >> 57) as i32;
if ipart < 0 {
return 0;
}
if ipart >= 63 {
return 0x7FFFFFFFFFFFFFFF;
}
// z is the fractional part of the log in Q62 format.
// We need 1 bit of headroom since the magnitude can get larger than 1
// during the iteration, and a sign bit.
let mut z = logq57 - q57(ipart);
let mut w: i64;
if z != 0 {
// Rust has 128 bit multiplies, so it should be possible to do this
// faster without losing accuracy.
z <<= 5;
// w is the exponential in Q61 format (since it also needs headroom and can
// get as large as 2.0); we could get another bit if we dropped the sign,
// but we'll recover that bit later anyway.
// Ideally this should start out as
// \lim_{n->\infty} 2^{61}/\product_{i=1}^n \sqrt{1-2^{-2i}}
// but in order to guarantee convergence we have to repeat iterations 4,
// 13 (=3*4+1), and 40 (=3*13+1, etc.), so it winds up somewhat larger.
w = 0x26A3D0E401DD846D;
let mut i: i64 = 0;
loop {
let mask = -((z < 0) as i64);
w += ((w >> (i + 1)) + mask) ^ mask;
z -= (ATANH_LOG2[i as usize] + mask) ^ mask;
// Repeat iteration 4.
if i >= 3 {
break;
}
z *= 2;
i += 1;
}
loop {
let mask = -((z < 0) as i64);
w += ((w >> (i + 1)) + mask) ^ mask;
z -= (ATANH_LOG2[i as usize] + mask) ^ mask;
// Repeat iteration 13.
if i >= 12 {
break;
}
z *= 2;
i += 1;
}
while i < 32 {
let mask = -((z < 0) as i64);
w += ((w >> (i + 1)) + mask) ^ mask;
z = (z - ((ATANH_LOG2[i as usize] + mask) ^ mask)) * 2;
i += 1;
}
// Skip the remaining iterations unless we really require that much
// precision.
// We could have bailed out earlier for smaller iparts, but that would
// require initializing w from a table, as the limit doesn't converge to
// 61-bit precision until n=30.
let mut wlo: i32 = 0;
if ipart > 30 {
// For these iterations, we just update the low bits, as the high bits
// can't possibly be affected.
// OD_ATANH_LOG2 has also converged (it actually did so one iteration
// earlier, but that's no reason for an extra special case).
loop {
let mask = -((z < 0) as i64);
wlo += (((w >> i) + mask) ^ mask) as i32;
z -= (ATANH_LOG2[31] + mask) ^ mask;
// Repeat iteration 40.
if i >= 39 {
break;
}
z *= 2;
i += 1;
}
while i < 61 {
let mask = -((z < 0) as i64);
wlo += (((w >> i) + mask) ^ mask) as i32;
z = (z - ((ATANH_LOG2[31] + mask) ^ mask)) * 2;
i += 1;
}
}
w = (w << 1) + (wlo as i64);
} else {
w = 1i64 << 62;
}
if ipart < 62 {
w = ((w >> (61 - ipart)) + 1) >> 1;
}
w
}
/// Computes the binary log of `n`.
/// `n`: a 64-bit integer in Q0 (no fraction).
/// Returns a 64-bit log in Q57.
pub const fn blog64(n: i64) -> i64 {
if n <= 0 {
return -1;
}
let ipart = 63 - n.leading_zeros() as i32;
let w = if ipart > 61 { n >> (ipart - 61) } else { n << (61 - ipart) };
if (w & (w - 1)) == 0 {
return q57(ipart);
}
// z is the fractional part of the log in Q61 format.
let mut z: i64 = 0;
// Rust has 128 bit multiplies, so it should be possible to do this
// faster without losing accuracy.
// x and y are the cosh() and sinh(), respectively, in Q61 format.
// We are computing z = 2*atanh(y/x) = 2*atanh((w - 1)/(w + 1)).
let mut x = w + (1i64 << 61);
let mut y = w - (1i64 << 61);
// Repeat iteration 4.
// Repeat iteration 13.
// Repeat iteration 40.
let bounds = [3, 12, 39, 61];
let mut i = 0;
let mut j = 0;
loop {
let end = bounds[j];
loop {
let mask = -((y < 0) as i64);
// ATANH_LOG2 has converged at iteration 32.
z += ((ATANH_LOG2[if i < 31 { i } else { 31 }] >> i) + mask) ^ mask;
let u = x >> (i + 1);
x -= ((y >> (i + 1)) + mask) ^ mask;
y -= (u + mask) ^ mask;
if i == end {
break;
}
i += 1;
}
j += 1;
if j == bounds.len() {
break;
}
}
z = (z + 8) >> 4;
q57(ipart) + z
}
/// Computes the binary log of `n`.
/// `n`: an unsigned 32-bit integer in Q0 (no fraction).
/// Returns a signed 32-bit log in Q24.
#[allow(unused)]
pub const fn blog32(n: u32) -> i32 {
if n == 0 {
return -1;
}
let ipart = 31 - n.leading_zeros() as i32;
let n = n as i64;
let w = if ipart > 61 { n >> (ipart - 61) } else { n << (61 - ipart) };
if (w & (w - 1)) == 0 {
return ipart << 24;
}
// z is the fractional part of the log in Q61 format.
let mut z: i64 = 0;
// Rust has 128 bit multiplies, so it should be possible to do this
// faster without losing accuracy.
// x and y are the cosh() and sinh(), respectively, in Q61 format.
// We are computing z = 2*atanh(y/x) = 2*atanh((w - 1)/(w + 1)).
let mut x = w + (1i64 << 61);
let mut y = w - (1i64 << 61);
// Repeat iteration 4.
// Repeat iteration 13.
let bounds = [3, 12, 29];
let mut i = 0;
let mut j = 0;
loop {
let end = bounds[j];
loop {
let mask = -((y < 0) as i64);
z += ((ATANH_LOG2[i] >> i) + mask) ^ mask;
let u = x >> (i + 1);
x -= ((y >> (i + 1)) + mask) ^ mask;
y -= (u + mask) ^ mask;
if i == end {
break;
}
i += 1;
}
j += 1;
if j == bounds.len() {
break;
}
}
const SHIFT: usize = 61 - 24;
z = (z + (1 << SHIFT >> 1)) >> SHIFT;
(ipart << 24) + z as i32
}
/// Converts a Q57 fixed-point fraction to Q24 by rounding.
pub const fn q57_to_q24(v: i64) -> i32 {
(((v >> 32) + 1) >> 1) as i32
}
/// Converts a Q24 fixed-point fraction to Q57.
pub const fn q24_to_q57(v: i32) -> i64 {
(v as i64) << 33
}
/// Binary exponentiation of a `log_scale` with 24-bit fractional precision and
/// saturation.
/// `log_scale`: A binary logarithm in Q24 format.
/// Returns the binary exponential in Q24 format, saturated to 2**47 - 1 if
/// `log_scale` was too large.
pub const fn bexp_q24(log_scale: i32) -> i64 {
if log_scale < 23 << 24 {
let ret = bexp64(((log_scale as i64) << 33) + q57(24));
if ret < (1i64 << 47) - 1 {
return ret;
}
}
(1i64 << 47) - 1
}
/// Polynomial approximation of a binary exponential.
/// Q10 input, Q0 output.
#[allow(unused)]
pub const fn bexp32_q10(z: i32) -> u32 {
let ipart = z >> 10;
let mut n = ((z & ((1 << 10) - 1)) << 4) as u32;
n = ({
n * (((n * (((n * (((n * 3548) >> 15) + 6817)) >> 15) + 15823)) >> 15)
+ 22708)
} >> 15)
+ 16384;
if 14 - ipart > 0 {
(n + (1 << (13 - ipart))) >> (14 - ipart)
} else {
n << (ipart - 14)
}
}
/// Polynomial approximation of a binary logarithm.
/// Q0 input, Q11 output.
pub const fn blog32_q11(w: u32) -> i32 {
if w == 0 {
return -1;
}
let ipart = 32 - w.leading_zeros() as i32;
let n = if ipart - 16 > 0 { w >> (ipart - 16) } else { w << (16 - ipart) }
as i32
- 32768
- 16384;
let fpart = ({
n * (((n * (((n * (((n * -1402) >> 15) + 2546)) >> 15) - 5216)) >> 15)
+ 15745)
} >> 15)
- 6797;
(ipart << 11) + (fpart >> 3)
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn blog64_vectors() {
assert!(blog64(1793) == 0x159dc71e24d32daf);
assert!(blog64(0x678dde6e5fd29f05) == 0x7d6373ad151ca685);
}
#[test]
fn bexp64_vectors() {
assert!(bexp64(0x159dc71e24d32daf) == 1793);
assert!((bexp64(0x7d6373ad151ca685) - 0x678dde6e5fd29f05).abs() < 29);
}
#[test]
fn blog64_bexp64_round_trip() {
for a in 1..=std::u16::MAX as i64 {
let b = std::i64::MAX / a;
let (log_a, log_b, log_ab) = (blog64(a), blog64(b), blog64(a * b));
assert!((log_a + log_b - log_ab).abs() < 4);
assert!(bexp64(log_a) == a);
assert!((bexp64(log_b) - b).abs() < 128);
assert!((bexp64(log_ab) - a * b).abs() < 128);
}
}
#[test]
fn blog32_vectors() {
assert_eq!(blog32(0), -1);
assert_eq!(blog32(1793), q57_to_q24(0x159dc71e24d32daf));
}
#[test]
fn bexp_q24_vectors() {
assert_eq!(bexp_q24(i32::MAX), (1i64 << 47) - 1);
assert_eq!(
(bexp_q24(q57_to_q24(0x159dc71e24d32daf)) + (1 << 24 >> 1)) >> 24,
1793
);
}
#[test]
fn blog32_bexp_q24_round_trip() {
for a in 1..=std::u16::MAX as u32 {
let b = (std::u32::MAX >> 9) / a;
let (log_a, log_b, log_ab) = (blog32(a), blog32(b), blog32(a * b));
assert!((log_a + log_b - log_ab).abs() < 4);
assert!((bexp_q24(log_a) - (i64::from(a) << 24)).abs() < (1 << 24 >> 1));
assert!(((bexp_q24(log_b) >> 24) - i64::from(b)).abs() < 128);
assert!(
((bexp_q24(log_ab) >> 24) - i64::from(a) * i64::from(b)).abs() < 128
);
}
}
#[test]
fn blog32_q11_bexp32_q10_round_trip() {
for a in 1..=std::i16::MAX as i32 {
let b = std::i16::MAX as i32 / a;
let (log_a, log_b, log_ab) = (
blog32_q11(a as u32),
blog32_q11(b as u32),
blog32_q11(a as u32 * b as u32),
);
assert!((log_a + log_b - log_ab).abs() < 4);
assert!((bexp32_q10((log_a + 1) >> 1) as i32 - a).abs() < 18);
assert!((bexp32_q10((log_b + 1) >> 1) as i32 - b).abs() < 2);
assert!((bexp32_q10((log_ab + 1) >> 1) as i32 - a * b).abs() < 18);
}
}
}