forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedian-of-two-sorted-arrays.py
152 lines (130 loc) · 5.08 KB
/
median-of-two-sorted-arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Time: O(log(min(m, n)))
# Space: O(1)
# There are two sorted arrays nums1 and nums2 of size m and n respectively.
# Find the median of the two sorted arrays.
# The overall run time complexity should be O(log (m+n)).
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
len1, len2 = len(nums1), len(nums2)
if (len1 + len2) % 2 == 1:
return self.getKth(nums1, nums2, (len1 + len2)/2 + 1)
else:
return (self.getKth(nums1, nums2, (len1 + len2)/2) + \
self.getKth(nums1, nums2, (len1 + len2)/2 + 1)) * 0.5
def getKth(self, A, B, k):
m, n = len(A), len(B)
if m > n:
return self.getKth(B, A, k)
left, right = 0, m
while left < right:
mid = left + (right - left) / 2
if 0 <= k - 1 - mid < n and A[mid] >= B[k - 1 - mid]:
right = mid
else:
left = mid + 1
Ai_minus_1 = A[left - 1] if left - 1 >= 0 else float("-inf")
Bj = B[k - 1 - left] if k - 1 - left >= 0 else float("-inf")
return max(Ai_minus_1, Bj)
class Solution2(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
A, B, m, n = nums1, nums2, len(nums1), len(nums2)
if m > n: A, B, m, n = B, A, n, m
if n == 0: raise ValueError
imin, imax, half_len = 0, m, (m+n+1)/2
while imin <= imax:
i = (imin + imax) / 2
j = half_len - i
if i < m and B[j-1] > A[i]:
imin = i+1
elif i > 0 and A[i-1] > B[j]:
imax = i-1
else:
if i == 0: max_of_left = B[j-1]
elif j == 0: max_of_left = A[i-1]
else: max_of_left = max(B[j-1], A[i-1])
if (m+n)%2 == 1:
return max_of_left
if i == m: min_of_right = B[j]
elif j == n: min_of_right = A[i]
else: min_of_right = min(B[j], A[i])
return (max_of_left+min_of_right)/2.0
# Time: O(log(max(m, n)) * log(max_val - min_val))
# Space: O(1)
# Generic solution.
class Solution_Generic(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
len1, len2 = len(nums1), len(nums2)
if (len1 + len2) % 2 == 1:
return self.getKth([nums1, nums2], (len1 + len2)/2 + 1)
else:
return (self.getKth([nums1, nums2], (len1 + len2)/2) + \
self.getKth([nums1, nums2], (len1 + len2)/2 + 1)) * 0.5
def getKth(self, arrays, k):
def binary_search(array, left, right, target, compare):
while left <= right:
mid = left + (right - left) / 2
if compare(array, mid, target):
right = mid - 1
else:
left = mid + 1
return left
def match(arrays, num, target):
res = 0
for array in arrays:
if array:
res += len(array) - binary_search(array, 0, len(array) - 1, num, \
lambda array, x, y: array[x] > y)
return res < target
left, right = float("inf"), float("-inf")
for array in arrays:
if array:
left = min(left, array[0])
right = max(right, array[-1])
return binary_search(arrays, left, right, k, match)
class Solution3(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
if len(nums2) < len(nums1): return self.findMedianSortedArrays(nums2, nums1)
cut1, cut2, cutL, cutR = 0, 0, 0, len(nums1)
length = len(nums1) + len(nums2)
while cut1 <= len(nums1):
cut1 = (cutR - cutL)/2 + cutL
cut2 = length /2 - cut1
L1 = float('-inf') if cut1 == 0 else nums1[cut1 - 1]
L2 = float('-inf') if cut2 == 0 else nums2[cut2 - 1]
R1 = float('inf') if cut1 == len(nums1) else nums1[cut1]
R2 = float('inf') if cut2 == len(nums2) else nums2[cut2]
if L1 > R2:
cutR = cut1 - 1
elif L2 > R1:
cutL = cut1 + 1
else:
if length%2 == 0:
L1 = L1 if L1 > L2 else L2
R1 = R1 if R1 < R2 else R2
return (L1 + R1)/2.0
else:
R1 = R1 if R1 < R2 else R2
return R1
if __name__ == "__main__":
print Solution().findMedianSortedArrays([1, 3, 5, 7], [2, 4, 6])
print Solution().findMedianSortedArrays([1, 3, 5], [2, 4, 6])