-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvx_spawn.c
274 lines (214 loc) · 7.15 KB
/
vx_spawn.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#include <vx_spawn.h>
#include <vx_intrinsics.h>
#include <inttypes.h>
#ifdef __cplusplus
extern "C" {
#endif
#define NUM_CORES_MAX 32
#define MIN(a, b) ((a) < (b) ? (a) : (b))
typedef struct {
vx_spawn_tasks_cb callback;
void * arg;
int offset;
int N;
int R;
} wspawn_tasks_args_t;
typedef struct {
struct context_t * ctx;
vx_spawn_kernel_cb callback;
void * arg;
int offset;
int N;
int R;
char isXYpow2;
char isXpow2;
char log2XY;
char log2X;
} wspawn_kernel_args_t;
void* g_wspawn_args[NUM_CORES_MAX];
inline char is_log2(int x) {
return ((x & (x-1)) == 0);
}
inline int fast_log2(int x) {
float f = x;
return (*(int*)(&f)>>23) - 127;
}
static void spawn_tasks_callback() {
vx_tmc(vx_num_threads());
int core_id = vx_core_id();
int wid = vx_warp_id();
int tid = vx_thread_id();
int NT = vx_num_threads();
wspawn_tasks_args_t* p_wspawn_args = (wspawn_tasks_args_t*)g_wspawn_args[core_id];
int wK = (p_wspawn_args->N * wid) + MIN(p_wspawn_args->R, wid);
int tK = p_wspawn_args->N + (wid < p_wspawn_args->R);
int offset = p_wspawn_args->offset + (wK * NT) + (tid * tK);
for (int task_id = offset, N = task_id + tK; task_id < N; ++task_id) {
(p_wspawn_args->callback)(task_id, p_wspawn_args->arg);
}
vx_tmc(0 == wid);
}
void spawn_remaining_tasks_callback(int nthreads) {
vx_tmc(nthreads);
int core_id = vx_core_id();
int tid = vx_thread_gid();
wspawn_tasks_args_t* p_wspawn_args = (wspawn_tasks_args_t*)g_wspawn_args[core_id];
int task_id = p_wspawn_args->offset + tid;
(p_wspawn_args->callback)(task_id, p_wspawn_args->arg);
vx_tmc(1);
}
void vx_spawn_tasks(int num_tasks, vx_spawn_tasks_cb callback , void * arg) {
// device specs
int NC = vx_num_cores();
int NW = vx_num_warps();
int NT = vx_num_threads();
// current core id
int core_id = vx_core_id();
if (core_id >= NUM_CORES_MAX)
return;
// calculate necessary active cores
int WT = NW * NT;
int nC = (num_tasks > WT) ? (num_tasks / WT) : 1;
int nc = MIN(nC, NC);
if (core_id >= nc)
return; // terminate extra cores
// number of tasks per core
int tasks_per_core = num_tasks / nc;
int tasks_per_core0 = tasks_per_core;
if (core_id == (NC-1)) {
int QC_r = num_tasks - (nc * tasks_per_core0);
tasks_per_core0 += QC_r; // last core executes remaining tasks
}
// number of tasks per warp
int nW = tasks_per_core0 / NT; // total warps per core
int rT = tasks_per_core0 - (nW * NT); // remaining threads
int fW = (nW >= NW) ? (nW / NW) : 0; // full warps iterations
int rW = (fW != 0) ? (nW - fW * NW) : 0; // remaining warps
if (0 == fW)
fW = 1;
//--
wspawn_tasks_args_t wspawn_args = { callback, arg, core_id * tasks_per_core, fW, rW };
g_wspawn_args[core_id] = &wspawn_args;
//--
if (nW >= 1) {
int nw = MIN(nW, NW);
vx_wspawn(nw, spawn_tasks_callback);
spawn_tasks_callback();
}
//--
if (rT != 0) {
wspawn_args.offset = tasks_per_core0 - rT;
spawn_remaining_tasks_callback(rT);
}
}
///////////////////////////////////////////////////////////////////////////////
static void spawn_kernel_callback() {
vx_tmc(vx_num_threads());
int core_id = vx_core_id();
int wid = vx_warp_id();
int tid = vx_thread_id();
int NT = vx_num_threads();
wspawn_kernel_args_t* p_wspawn_args = (wspawn_kernel_args_t*)g_wspawn_args[core_id];
int wK = (p_wspawn_args->N * wid) + MIN(p_wspawn_args->R, wid);
int tK = p_wspawn_args->N + (wid < p_wspawn_args->R);
int offset = p_wspawn_args->offset + (wK * NT) + (tid * tK);
int X = p_wspawn_args->ctx->num_groups[0];
int Y = p_wspawn_args->ctx->num_groups[1];
int XY = X * Y;
for (int wg_id = offset, N = wg_id + tK; wg_id < N; ++wg_id) {
int k = p_wspawn_args->isXYpow2 ? (wg_id >> p_wspawn_args->log2XY) : (wg_id / XY);
int wg_2d = wg_id - k * XY;
int j = p_wspawn_args->isXpow2 ? (wg_2d >> p_wspawn_args->log2X) : (wg_2d / X);
int i = wg_2d - j * X;
int gid0 = p_wspawn_args->ctx->global_offset[0] + i;
int gid1 = p_wspawn_args->ctx->global_offset[1] + j;
int gid2 = p_wspawn_args->ctx->global_offset[2] + k;
(p_wspawn_args->callback)(p_wspawn_args->arg, p_wspawn_args->ctx, gid0, gid1, gid2);
}
vx_tmc(0 == wid);
}
static void spawn_kernel_remaining_callback(int nthreads) {
vx_tmc(nthreads);
int core_id = vx_core_id();
int tid = vx_thread_id();
wspawn_kernel_args_t* p_wspawn_args = (wspawn_kernel_args_t*)g_wspawn_args[core_id];
//int wg_id = p_wspawn_args->offset + tid;
int X = p_wspawn_args->ctx->num_groups[0];
int Y = p_wspawn_args->ctx->num_groups[1];
int XY = X * Y;
//printf("X Y: %d %d\n", X, Y);
for(int wg_id =p_wspawn_args->offset, N = wg_id + nthreads; wg_id < N; ++wg_id){
int k = p_wspawn_args->isXYpow2 ? (wg_id >> p_wspawn_args->log2XY) : (wg_id / XY);
int wg_2d = wg_id - k * XY;
int j = p_wspawn_args->isXpow2 ? (wg_2d >> p_wspawn_args->log2X) : (wg_2d / X);
int i = wg_2d - j * X;
//printf("i j k: %d %d %d\n", i,j,k);
int gid0 = p_wspawn_args->ctx->global_offset[0] + i;
int gid1 = p_wspawn_args->ctx->global_offset[1] + j;
int gid2 = p_wspawn_args->ctx->global_offset[2] + k;
(p_wspawn_args->callback)(p_wspawn_args->arg, p_wspawn_args->ctx, gid0, gid1, gid2);
}
vx_tmc(1);
}
void vx_spawn_kernel(struct context_t * ctx, vx_spawn_kernel_cb callback, void * arg) {
// total number of WGs
int X = ctx->num_groups[0];
int Y = ctx->num_groups[1];
int Z = ctx->num_groups[2];
int XY = X * Y;
int Q = XY * Z;
// device specs
int NC = vx_num_cores();
int NW = vx_num_warps();
int NT = vx_num_threads();
// current core id
int core_id = vx_core_id();
if (core_id >= NUM_CORES_MAX)
return;
// calculate necessary active cores
int WT = NW * NT;
int nC = (Q > WT) ? (Q / WT) : 1;
int nc = MIN(nC, NC);
if (core_id >= nc)
return; // terminate extra cores
// number of workgroups per core
int wgs_per_core = Q / nc;
int wgs_per_core0 = wgs_per_core;
if (core_id == (nc-1)) {
int QC_r = Q - (nc * wgs_per_core0);
wgs_per_core0 += QC_r; // last core executes remaining WGs
}
// number of workgroups per warp
int nW = wgs_per_core0 / NT; // total warps per core
int rT = wgs_per_core0 - (nW * NT); // remaining threads
//printf("rT: %d\n",rT);
int fW = (nW >= NW) ? (nW / NW) : 0; // full warps iterations
int rW = (fW != 0) ? (nW - fW * NW) : 0; // reamining full warps
if (0 == fW)
fW = 1;
// fast path handling
char isXYpow2 = is_log2(XY);
char isXpow2 = is_log2(X);
char log2XY = fast_log2(XY);
char log2X = fast_log2(X);
//--
wspawn_kernel_args_t wspawn_args = {
ctx, callback, arg, core_id * wgs_per_core, fW, rW, isXYpow2, isXpow2, log2XY, log2X
};
g_wspawn_args[core_id] = &wspawn_args;
//--
if (nW >= 1) {
int nw = MIN(nW, NW);
vx_wspawn(nw, spawn_kernel_callback);
spawn_kernel_callback();
}
//--
if (rT != 0) {
//wspawn_args.offset = wgs_per_core0 - rT;
wspawn_args.offset = core_id * wgs_per_core + wgs_per_core0 - rT;
spawn_kernel_remaining_callback(rT);
}
}
#ifdef __cplusplus
}
#endif