forked from mindspore-lab/mindyolo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
271 lines (243 loc) · 10.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import argparse
import ast
import os
import time
import yaml
from datetime import datetime
from pathlib import Path
import numpy as np
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import mindspore as ms
from mindspore import Tensor, context, nn
from mindyolo.data import COCO80_TO_COCO91_CLASS, COCODataset, create_loader
from mindyolo.models import create_model
from mindyolo.utils import logger
from mindyolo.utils.config import parse_args
from mindyolo.utils.metrics import non_max_suppression, scale_coords, xyxy2xywh
from mindyolo.utils.utils import set_seed
def get_parser_test(parents=None):
parser = argparse.ArgumentParser(description="Test", parents=[parents] if parents else [])
parser.add_argument("--device_target", type=str, default="Ascend", help="device target, Ascend/GPU/CPU")
parser.add_argument("--ms_mode", type=int, default=0, help="train mode, graph/pynative")
parser.add_argument("--ms_amp_level", type=str, default="O0", help="amp level, O0/O1/O2")
parser.add_argument(
"--ms_enable_graph_kernel", type=ast.literal_eval, default=False, help="use enable_graph_kernel or not"
)
parser.add_argument("--weight", type=str, default="yolov7_300.ckpt", help="model.ckpt path(s)")
parser.add_argument("--per_batch_size", type=int, default=32, help="size of each image batch")
parser.add_argument("--img_size", type=int, default=640, help="inference size (pixels)")
parser.add_argument(
"--single_cls", type=ast.literal_eval, default=False, help="train multi-class data as single-class"
)
parser.add_argument("--rect", type=ast.literal_eval, default=False, help="rectangular training")
parser.add_argument("--nms_time_limit", type=float, default=60.0, help="time limit for NMS")
parser.add_argument("--conf_thres", type=float, default=0.001, help="object confidence threshold")
parser.add_argument("--iou_thres", type=float, default=0.65, help="IOU threshold for NMS")
parser.add_argument(
"--conf_free", type=ast.literal_eval, default=False, help="Whether the prediction result include conf"
)
parser.add_argument("--seed", type=int, default=2, help="set global seed")
parser.add_argument("--log_level", type=str, default="INFO", help="save dir")
parser.add_argument("--save_dir", type=str, default="./runs_test", help="save dir")
# args for ModelArts
parser.add_argument("--enable_modelarts", type=ast.literal_eval, default=False, help="enable modelarts")
parser.add_argument("--data_url", type=str, default="", help="ModelArts: obs path to dataset folder")
parser.add_argument("--ckpt_url", type=str, default="", help="ModelArts: obs path to checkpoint folder")
parser.add_argument("--train_url", type=str, default="", help="ModelArts: obs path to dataset folder")
parser.add_argument(
"--data_dir", type=str, default="/cache/data/", help="ModelArts: local device path to dataset folder"
)
parser.add_argument(
"--ckpt_dir",
type=str,
default="/cache/pretrain_ckpt/",
help="ModelArts: local device path to checkpoint folder",
)
return parser
def set_default_test(args):
# Set Context
context.set_context(mode=args.ms_mode, device_target=args.device_target, max_call_depth=2000)
if args.device_target == "Ascend":
context.set_context(device_id=int(os.getenv("DEVICE_ID", 0)))
elif args.device_target == "GPU" and args.ms_enable_graph_kernel:
context.set_context(enable_graph_kernel=True)
args.rank, args.rank_size = 0, 1
# Set Data
args.data.nc = 1 if args.single_cls else int(args.data.nc) # number of classes
args.data.names = ["item"] if args.single_cls and len(args.names) != 1 else args.data.names # class names
assert len(args.data.names) == args.data.nc, "%g names found for nc=%g dataset in %s" % (
len(args.data.names),
args.data.nc,
args.config,
)
# Directories and Save run settings
args.save_dir = os.path.join(args.save_dir, datetime.now().strftime("%Y.%m.%d-%H:%M:%S"))
os.makedirs(args.save_dir, exist_ok=True)
if args.rank % args.rank_size == 0:
with open(os.path.join(args.save_dir, "cfg.yaml"), "w") as f:
yaml.dump(vars(args), f, sort_keys=False)
# Set Logger
logger.setup_logging(logger_name="MindYOLO", log_level="INFO", rank_id=args.rank, device_per_servers=args.rank_size)
logger.setup_logging_file(log_dir=os.path.join(args.save_dir, "logs"))
# Modelarts: Copy data, from the s3 bucket to the computing node; Reset dataset dir.
if args.enable_modelarts:
from mindyolo.utils.modelarts import sync_data
os.makedirs(args.data_dir, exist_ok=True)
sync_data(args.data_url, args.data_dir)
sync_data(args.save_dir, args.train_url)
if args.ckpt_url:
sync_data(args.ckpt_url, args.ckpt_dir) # pretrain ckpt
# args.data.dataset_dir = os.path.join(args.data_dir, args.data.dataset_dir)
args.data.val_set = os.path.join(args.data_dir, args.data.val_set)
args.data.test_set = os.path.join(args.data_dir, args.data.test_set)
args.weight = args.ckpt_dir if args.ckpt_dir else ""
def test(
network: nn.Cell,
dataloader: ms.dataset.Dataset,
anno_json_path: str,
conf_thres: float = 0.001,
iou_thres: float = 0.65,
conf_free: bool = False,
nms_time_limit: float = -1.0,
is_coco_dataset: bool = True,
imgIds: list = [],
per_batch_size: int = -1,
):
steps_per_epoch = dataloader.get_dataset_size()
loader = dataloader.create_dict_iterator(output_numpy=True, num_epochs=1)
coco91class = COCO80_TO_COCO91_CLASS
sample_num = 0
infer_times = 0.0
nms_times = 0.0
result_dicts = []
for i, data in enumerate(loader):
imgs, _, paths, ori_shape, pad, hw_scale = (
data["image"],
data["labels"],
data["img_files"],
data["hw_ori"],
data["pad"],
data["hw_scale"],
)
nb, _, height, width = imgs.shape
imgs = Tensor(imgs, ms.float32)
# Run infer
_t = time.time()
out, _ = network(imgs) # inference and training outputs
infer_times += time.time() - _t
# Run NMS
t = time.time()
out = out.asnumpy()
out = non_max_suppression(
out,
conf_thres=conf_thres,
iou_thres=iou_thres,
conf_free=conf_free,
multi_label=True,
time_limit=nms_time_limit,
)
nms_times += time.time() - t
# Statistics pred
for si, pred in enumerate(out):
path = Path(str(paths[si]))
sample_num += 1
if len(pred) == 0:
continue
# Predictions
predn = np.copy(pred)
scale_coords(
imgs[si].shape[1:], predn[:, :4], ori_shape[si], ratio=hw_scale[si], pad=pad[si]
) # native-space pred
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
result_dicts.append(
{
"image_id": image_id,
"category_id": coco91class[int(p[5])] if is_coco_dataset else int(p[5]),
"bbox": [round(x, 3) for x in b],
"score": round(p[4], 5),
}
)
logger.info(f"Sample {steps_per_epoch}/{i + 1}, time cost: {(time.time() - _t) * 1000:.2f} ms.")
# Compute mAP
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
anno = COCO(anno_json_path) # init annotations api
pred = anno.loadRes(result_dicts) # init predictions api
eval = COCOeval(anno, pred, "bbox")
if is_coco_dataset:
eval.params.imgIds = imgIds
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results ([email protected]:0.95, [email protected])
except Exception as e:
logger.error(f"pycocotools unable to run: {e}")
raise e
t = tuple(x / sample_num * 1E3 for x in (infer_times, nms_times, infer_times + nms_times)) + \
(height, width, per_batch_size) # tuple
logger.info(f'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g;' % t)
return map, map50
def main(args):
# Init
set_seed(args.seed)
set_default_test(args)
# Create Network
network = create_model(
model_name=args.network.model_name,
model_cfg=args.network,
num_classes=args.data.nc,
sync_bn=False,
checkpoint_path=args.weight,
)
network.set_train(False)
ms.amp.auto_mixed_precision(network, amp_level=args.ms_amp_level)
# Create Dataloader
dataset_path = args.data.val_set
is_coco_dataset = "coco" in args.data.dataset_name
dataset = COCODataset(
dataset_path=dataset_path,
img_size=args.img_size,
transforms_dict=args.data.test_transforms,
is_training=False,
augment=False,
rect=args.rect,
single_cls=args.single_cls,
batch_size=args.per_batch_size,
stride=max(args.network.stride),
)
dataloader = create_loader(
dataset=dataset,
batch_collate_fn=dataset.test_collate_fn,
dataset_column_names=dataset.dataset_column_names,
batch_size=args.per_batch_size,
epoch_size=1,
rank=0,
rank_size=1,
shuffle=False,
drop_remainder=False,
num_parallel_workers=args.data.num_parallel_workers,
python_multiprocessing=True,
)
# Run test
test(
network=network,
dataloader=dataloader,
anno_json_path=os.path.join(
args.data.val_set[: -len(args.data.val_set.split("/")[-1])], "annotations/instances_val2017.json"
),
conf_thres=args.conf_thres,
iou_thres=args.iou_thres,
conf_free=args.conf_free,
nms_time_limit=args.nms_time_limit,
is_coco_dataset=is_coco_dataset,
imgIds=None if not is_coco_dataset else dataset.imgIds,
per_batch_size=args.per_batch_size,
)
logger.info("Testing completed.")
if __name__ == "__main__":
parser = get_parser_test()
args = parse_args(parser)
main(args)