-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathepiBAT.py
527 lines (463 loc) · 22 KB
/
epiBAT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
#!/usr/bin/env python
# coding: utf-8
import random
from scipy import stats
from collections import Counter
import numpy as np
import pandas as pd
import os
from math import exp
from math import log
from itertools import combinations #to generate combinations
#######################################################################
#PLEASE SET THE INPUT PARAMETERS HERE
gini_population = 50
k2_population = 50
iteration_size = 30
alpha_value = 0.1
searching_path = '/home/testingdata/76.1600.3.antesnp100.txt'
output_file = "results.txt"
#PLEASE SET THE HYPERPARAMETERS HERE (OPTIONAL)
freq_min = 0.02
freq_max = 0.1
alpha = 0.9
gamma = 0.9
min_loudness_A = 3
max_loudness_A = 8
required_iterations_for_taboo = 6
zeta_radius = 1.001
######################################################################
def is_the_same(coordinate):
rounded = round_coord(coordinate)
if rounded[0]==rounded[1]:
return True
else:
return False
def round_coord(coordinate):
snp = []
for i in range(dimension):
if coordinate[i]<=lowest_coord:
snp.append(int(round(lowest_coord)))
elif coordinate[i]>=highest_coord:
snp.append(int(round(highest_coord)))
else:
snp.append(int(round(coordinate[i])))
return snp
def standardize_coord(position):
if position[0]>position[1]:
aux = position[0]
position[0] = position[1]
position[1] = aux
return position
def get_scores(coordinate):
global visited
snp = round_coord(coordinate)
if(gini_computed[snp[0]][snp[1]])==-1:
contingency_table = pd.crosstab(df.Class, [df.iloc[:,snp[0]],df.iloc[:,snp[1]]])
gini_score = compute_gini(contingency_table)
gini_computed[snp[0]][snp[1]] = gini_score
k2_score = compute_K2_score(contingency_table)
k2score_computed[snp[0]][snp[1]] = k2_score
return gini_score,k2_score
else:
return gini_computed[snp[0]][snp[1]],k2score_computed[snp[0]][snp[1]]
def compute_gini(cont_table):
Pi = 0
gini = 0
for j, k in cont_table:
pi0 = cont_table[j][k][0] / 1600;
pi1 = cont_table[j][k][1] / 1600;
Pi = pi0 + pi1
gini += Pi * (1 - ((pi0*pi0) + (pi1*pi1)))
return gini
def compute_K2_score(cont_table):
k2_score = 0
for j, k in cont_table:
sum_controls = 0
sum_cases = 0
sum_all = 0
number_of_controls = 0
number_of_cases = 0
for number_of_controls in np.arange(1,cont_table[j][k][0]+1):
sum_controls= sum_controls + log(number_of_controls)
for number_of_cases in np.arange(1,cont_table[j][k][1]+1):
sum_cases = sum_cases + log(number_of_cases)
for i in np.arange(number_of_cases+1,number_of_cases+number_of_controls+2):
sum_all = sum_all + log(i)
k2_score = k2_score + sum_all - sum_controls
return k2_score
def get_p_value(position):
if precomputed_p_values[position[0]][position[1]] == -1:
contingency_table = pd.crosstab(df.Class, [df.iloc[:,position[0]], df.iloc[:,position[1]]])
for j, k in contingency_table:
if contingency_table[j][k][0]<5 or contingency_table[j][k][1]<5:
contingency_table.drop((j, k), axis = 1,inplace=True)
chi2_stat, p_val, dof, ex = stats.chi2_contingency(contingency_table,lambda_="log-likelihood")
precomputed_p_values[position[0]][position[1]] = p_val
return p_val
else:
return precomputed_p_values[position[0]][position[1]]
def is_in_taboo_coord(coord,taboo):
if coord[0]==taboo[0] or coord[0]==taboo[1] or coord[1]==taboo[0] or coord[1]==taboo[1]:
return True
else:
return False
def handle_same_SNPs(position):
if is_the_same(position):
random_dim = random.randint(0,dimension-1)
if position[random_dim]>=98.5:
random_dir = -1
elif position[random_dim]<0.5:
random_dir = 1
else:
random_dir = random.choice([-1,1])
position[random_dim] += random_dir
return standardize_coord(position)
def do_local_search(coord, average_loudness):
random_dim = random.randint(0,dimension-1)
coord[random_dim] = random.randint(0,99)
for rd in np.arange(dimension-1):
if rd==random_dim:
continue
else:
lowest = max(lowest_coord - coord[rd],-average_loudness)
highest = min(highest_coord - coord[rd],average_loudness)
epsilon = random.uniform(lowest, highest) #equation 4 from MOBA
coord[rd] = coord[rd] + epsilon
return handle_same_SNPs(coord)
def better_gini(new,old):
new_gini = get_scores(new)[0]
old_gini = get_scores(old)[0]
if new_gini<old_gini:
return True
else:
return False
def better_k2(new,old):
new_k2 = get_scores(new)[1]
old_k2 = get_scores(old)[1]
if new_k2<old_k2:
return True
else:
return False
def generate_population(lowest_coord,highest_coord,population_size,dimension):
pop = np.random.uniform(lowest_coord, highest_coord,(gini_population,dimension))
for i,bat in enumerate(pop):
while is_the_same(round_coord(bat)):
pop[i] = np.random.uniform(lowest_coord, highest_coord,dimension)
pop[i] = standardize_coord(bat)
return pop
def is_in_gini_taboo_region(coord):
for x in taboo_gini_positions:
if coord[0]==x[0] or coord[0]==x[1] or coord[1]==x[0] or coord[1]==x[1]:
return True
return False
def is_in_k2_taboo_region(coord):
for x in taboo_k2_positions:
if coord[0]==x[0] or coord[0]==x[1] or coord[1]==x[0] or coord[1]==x[1]:
return True
return False
#minimalizacny sort
def multicriterialsort(agents,scores):
dominated_flag = [0] * len(agents) #every agent is nondominated at start
for i in np.arange(len(agents)):
for j in np.arange(len(agents)):
if (i==j) or is_the_same(agents[j]) is True:
continue
if scores[j][0]<=scores[i][0] and scores[j][1]<=scores[i][1]:
if scores[j][0]<scores[i][0] or scores[j][1]<scores[i][1]:
dominated_flag[i] = 1
non_dominated_list = []
for i in np.arange(len(agents)):
if dominated_flag[i]==0:
non_dominated_list.append(i)
return dominated_flag,non_dominated_list
# ### Bat algorithm
# In[4]:
#inprogram parameters
dimension = 2
lowest_coord = 0 #set later
highest_coord = 0 #set later
total_combinations = 0 #set later
number_of_SNPs = 0 #set later
best_solutions = []
population_size = gini_population + k2_population
class Bats:
def __init__(self, number_of_SNPs,population_size,freq_min,freq_max):
self.position_gini = generate_population(lowest_coord, highest_coord,gini_population,dimension)
self.position_k2 = generate_population(lowest_coord, highest_coord,k2_population,dimension)
self.loudness_A = np.random.uniform(low=min_loudness_A, high=max_loudness_A, size=population_size)
self.pulse_emission_rate_R_base = np.random.uniform(low=0.0, high=0.5, size=population_size)
self.pulse_emission_rate_R = self.pulse_emission_rate_R_base
beta = np.random.uniform(low=0.0, high=1.0, size = (population_size,dimension))
self.pulse_frequency_F = freq_min + (freq_max-freq_min)*beta
self.velocity = np.random.uniform(0, 1,(population_size,dimension))
self.scores_gini = []
self.scores_k2 = []
def evaluate_scores(self):
self.scores_gini = [ get_scores(n)[0] for n in self.position_gini ]
self.scores_k2 = [ get_scores(n)[1] for n in self.position_k2 ]
def clip_agent(self,position,i):
if position[0]<lowest_coord:
position[0] = lowest_coord
self.velocity[i][0] = random.uniform(0.0, 1.0)
if position[1]<lowest_coord:
position[1] = lowest_coord
self.velocity[i][1] = random.uniform(0.0, 1.0)
if position[0]>highest_coord:
position[0] = highest_coord
self.velocity[i][0] = random.uniform(0.0, 1.0)
if position[1]>highest_coord:
position[1] = highest_coord
self.velocity[i][1] = random.uniform(0.0, 1.0)
return position
def move_agent(self,coord,velocity,index):
coord += velocity
coord = self.clip_agent(coord,index)
return handle_same_SNPs(coord)
def update(self,best_gini,ginibestbat,best_k2,k2bestbat,iteration,average_loudness):
#generate new solutions by flying towards one random best solution
beta = np.random.uniform(low=0.0, high=1.0, size = (population_size,dimension))
new_positions_gini = self.position_gini.copy()
new_positions_k2 = self.position_k2.copy()
self.pulse_frequency_F = freq_min + (freq_max-freq_min)*beta
#for each bat
for i,bat in enumerate(self.position_gini):
rand = random.uniform(0.0, 1.0)
if i != best_gini:
self.velocity[i] += (ginibestbat-bat)*self.pulse_frequency_F[i]
new_positions_gini[i] = self.move_agent(new_positions_gini[i],self.velocity[i],i)
#after flying check if the positions are better, if yes then accept
if rand < self.loudness_A[i] and better_gini(new_positions_gini[i],self.position_gini[i]):
self.loudness_A[i] *= alpha #loudness decreases
self.position_gini[i] = new_positions_gini[i]
if rand>self.pulse_emission_rate_R[i]:
new_positions_gini[i] = self.position_gini[i]
new_positions_gini[i] = do_local_search(new_positions_gini[i],average_loudness)
if better_gini(new_positions_gini[i],self.position_gini[i]):
self.pulse_emission_rate_R[i] = self.pulse_emission_rate_R_base[i]*(1 - exp(-gamma * iteration))
self.position_gini[i] = new_positions_gini[i]
else:
new_positions_gini[i] = do_local_search(new_positions_gini[i],average_loudness)
#accepting new solutions
if rand < self.loudness_A[i] and better_gini(new_positions_gini[i],self.position_gini[i]):
self.loudness_A[i] *= alpha #loudness decreases
self.pulse_emission_rate_R[i] = self.pulse_emission_rate_R_base[i]*(1 - exp(-gamma * iteration))
self.position_gini[i] = new_positions_gini[i]
if is_in_gini_taboo_region(round_coord(self.position_gini[i])):
self.position_gini[i] = self.taboo_gini_generate()
self.regenerate_agent(i)
for i,bat in enumerate(self.position_k2):
k2i = i+gini_population
rand = random.uniform(0.0, 1.0)
if i != best_k2:
self.velocity[k2i] += (k2bestbat-bat)*self.pulse_frequency_F[k2i]
new_positions_k2[i] = self.move_agent(new_positions_k2[i],self.velocity[k2i],k2i)
#after flying check if the positions are better, if yes then accept
if rand < self.loudness_A[k2i] and better_k2(new_positions_k2[i],self.position_k2[i]):
self.loudness_A[k2i] *= alpha #loudness decreases
self.position_k2[i] = new_positions_k2[i]
#try to find better solution in the area
if rand>self.pulse_emission_rate_R[k2i]:
new_positions_k2[i] = self.position_k2[i]
new_positions_k2[i] = do_local_search(new_positions_k2[i],average_loudness)
if better_k2(new_positions_k2[i],self.position_k2[i]):
self.pulse_emission_rate_R[k2i] = self.pulse_emission_rate_R_base[k2i]*(1 - exp(-gamma * iteration))
self.position_k2[i] = new_positions_k2[i]
else:
new_positions_k2[i] = do_local_search(new_positions_k2[i],average_loudness)
#accepting new solutions
if rand < self.loudness_A[k2i] and better_k2(new_positions_k2[i],self.position_k2[i]):
self.loudness_A[k2i] *= alpha #loudness decreases
self.pulse_emission_rate_R[k2i] = self.pulse_emission_rate_R_base[k2i]*(1 - exp(-gamma * iteration))
self.position_k2[i] = new_positions_k2[i]
if is_in_k2_taboo_region(round_coord(self.position_k2[i])):
self.position_k2[i] = self.taboo_k2_generate()
self.regenerate_agent(k2i)
def taboo_gini_generate(self):
new_position = np.random.uniform(lowest_coord, highest_coord,dimension)
while is_in_gini_taboo_region(round_coord(new_position)) or is_the_same(new_position):
new_position = np.random.uniform(lowest_coord, highest_coord,dimension)
return standardize_coord(new_position)
def taboo_k2_generate(self):
new_position = np.random.uniform(lowest_coord, highest_coord,dimension)
while is_in_k2_taboo_region(round_coord(new_position)) or is_the_same(new_position):
new_position = np.random.uniform(lowest_coord, highest_coord,dimension)
return standardize_coord(new_position)
def regenerate_agent(self,par_index):
self.velocity[par_index] = np.random.uniform(0, 1,dimension)
self.loudness_A[par_index] = np.random.uniform(low=min_loudness_A, high=max_loudness_A)
self.pulse_emission_rate_R[par_index] = self.pulse_emission_rate_R_base[par_index]
def search(self):
previous_gini = [-1,-1]
previous_k2 = [-1,-1]
prev_gini_count = 0
prev_k2_count = 0
for i in np.arange(iteration_size):
self.evaluate_scores()
best_gini = np.argmin(self.scores_gini)
best_gini_score = self.scores_gini[best_gini]
best_k2 = np.argmin(self.scores_k2)
best_k2_score = self.scores_k2[best_k2]
average_loudness = np.mean(self.loudness_A)
pos_gini = self.position_gini[best_gini]
pos_gini_r = round_coord(pos_gini)
if pos_gini_r == previous_gini:
prev_gini_count += 1
if prev_gini_count>required_iterations_for_taboo:
allSNP = []
for y,bat in enumerate(self.position_gini):
inside_position = round_coord(self.position_gini[y])
if is_in_taboo_coord(inside_position,pos_gini_r):
if inside_position[0] not in pos_gini_r:
allSNP.append(inside_position[0])
if inside_position[1] not in pos_gini_r:
allSNP.append(inside_position[1])
self.position_gini[y] = self.taboo_gini_generate()
self.regenerate_agent(y)
else:
allSNP.append(inside_position[0])
allSNP.append(inside_position[1])
allSNP = set(allSNP)
approx = best_gini_score*zeta_radius
for j in allSNP:
combined_SNP = standardize_coord([pos_gini_r[0],j])
if get_scores(combined_SNP)[0]<approx:
best_solutions.append(combined_SNP)
combined_SNP = standardize_coord([pos_gini_r[1],j])
if get_scores(combined_SNP)[0]<approx:
best_solutions.append(combined_SNP)
taboo_gini_positions.append(pos_gini_r)#taboo_region_bats[best_taboo_solution])
else:
prev_gini_count = 0
previous_gini = pos_gini_r
pos_k2 = self.position_k2[best_k2]
pos_k2_r = round_coord(pos_k2)
if pos_k2_r == previous_k2:
prev_k2_count += 1
if prev_k2_count>required_iterations_for_taboo:
allSNP = []
for y,bat in enumerate(self.position_k2):
inside_position = round_coord(self.position_k2[y])
if is_in_taboo_coord(inside_position,pos_k2_r):
if inside_position[0] not in pos_k2_r:
allSNP.append(inside_position[0])
if inside_position[1] not in pos_k2_r:
allSNP.append(inside_position[1])
self.position_k2[y] = self.taboo_k2_generate()
self.regenerate_agent(y+k2_population)
else:
allSNP.append(inside_position[0])
allSNP.append(inside_position[1])
allSNP = set(allSNP)
approx = best_k2_score*zeta_radius
for j in allSNP:
combined_SNP = standardize_coord([pos_k2_r[0],j])
if get_scores(combined_SNP)[1]<approx:
best_solutions.append(combined_SNP)
combined_SNP = standardize_coord([pos_k2_r[1],j])
if get_scores(combined_SNP)[1]<approx:
best_solutions.append(combined_SNP)
taboo_k2_positions.append(pos_k2_r)
else:
prev_k2_count = 0
previous_k2 = pos_k2_r
if pos_gini_r not in best_solutions:
best_solutions.append(pos_gini_r)
if pos_k2_r not in best_solutions:
best_solutions.append(pos_k2_r)
self.update(best_gini,pos_gini,best_k2,pos_k2,i+1,average_loudness)
# In[8]:
df = pd.read_csv(searching_path,delimiter=',')
df_without_class = df.drop('Class', axis=1)
number_of_SNPs = len(df.index)
w, h = len(df_without_class.columns), len(df_without_class.columns)
k2score_computed = [[-1 for x in range(w)] for y in range(h)]
gini_computed = [[-1 for x in range(w)] for y in range(h)]
precomputed_p_values = [[-1 for x in range(w)] for y in range(h)]
lowest_coord = -0.49 #global parameters
highest_coord = h-0.51 #global parameters
total_combinations = (h*(h-1))/2
print("Detecting SNP epistasis in", searching_path)
taboo_gini_positions = []
taboo_k2_positions = []
best_solutions = []
b = Bats(int(round(highest_coord)),population_size,freq_min,freq_max)
b.search()
final_scores = [get_scores(j) for j in best_solutions]
flags,nondominatedsolutions = multicriterialsort(best_solutions,final_scores)
gini_final_scores = [get_scores(j)[0] for j in best_solutions]
k2_final_scores = [get_scores(j)[1] for j in best_solutions]
max_report = min(5,len(gini_final_scores)-1)
bestginis = np.argpartition(gini_final_scores, max_report)[:max_report+1]
max_report = min(5,len(k2_final_scores)-1)
bestk2s = np.argpartition(k2_final_scores, max_report)[:max_report+1]
top_SNPs = []
for j in bestginis:
if best_solutions[j] not in top_SNPs:
top_SNPs.append(best_solutions[j])
for j in bestk2s:
if best_solutions[j] not in top_SNPs:
top_SNPs.append(best_solutions[j])
for j in nondominatedsolutions:
if best_solutions[j] not in top_SNPs:
top_SNPs.append(best_solutions[j])
if not taboo_gini_positions:
for j in taboo_gini_positions:
if taboo_gini_positions[j] not in top_SNPs:
top_SNPs.append(taboo_gini_positions[j])
if not taboo_k2_positions:
for j in taboo_k2_positions:
if taboo_k2_positions[j] not in top_SNPs:
top_SNPs.append(taboo_k2_positions[j])
only_SNP = []
for j in top_SNPs:
only_SNP.append(j[0])
only_SNP.append(j[1])
only_SNP = set(only_SNP)
combs = combinations(only_SNP, 2)
comb_SNPs = [standardize_coord(round_coord(j)) for j in combs]
p_values = [ get_p_value(j) for j in comb_SNPs ]
max_report = min(10,len(p_values)-1)
final_best_ranks = np.argpartition(p_values, max_report)[:max_report+1]
results = [comb_SNPs[j] for j in final_best_ranks]
realSNPs = []
for j in results:
realSNP = []
realSNP.append(df.columns[j[0]])
realSNP.append(df.columns[j[1]])
realSNPs.append(realSNP)
print("Results of the 1st stage of epiBAT algorithm",realSNPs)
p_values = [ get_p_value(j) for j in results ]
bonferonni = alpha_value/total_combinations
final_results = [results[index] for index,j in enumerate(p_values) if j<bonferonni ]
final_prisne = []
for j in final_results:
o = False
for k in final_results:
if j==k:
continue
if is_in_taboo_coord(j,k):
if get_p_value(j)>get_p_value(k):
o = True
break
if o is False:
final_prisne.append(j)
if not final_prisne:
print("No SNP combination passed the G-test with p_value",bonferonni)
else:
print("The candidate set after the G-test with p_value",bonferonni)
for j in final_prisne:
print(df.columns[j[0]],df.columns[j[1]],"p_value:",get_p_value(j),"Gini score:",get_scores(j)[0],"K2 score:",get_scores(j)[1])
with open(output_file, "a") as f:
print("Results of epiBAT for "+ searching_path,file=f)
print("Results of the 1st stage of epiBAT algorithm:",file=f)
print(realSNPs,file=f)
print("Final results after the G-test with p_value",bonferonni,file=f)
if not final_prisne:
print("No SNP combination passed the G-test with p_value",bonferonni,file=f)
else:
for j in final_prisne:
realSNP = []
realSNP.append(df.columns[j[0]])
realSNP.append(df.columns[j[1]])
print(" ",realSNP,"p_value:",get_p_value(j),file=f)