6
6
import torch .nn as nn
7
7
import torch .nn .functional as F
8
8
import torch .optim as optim
9
+ from torch .utils .data import TensorDataset
10
+
11
+ from loadCOCO import loadCOCO
9
12
10
13
11
14
class Net (nn .Module ):
12
15
def __init__ (self ):
13
16
super (Net , self ).__init__ ()
14
- self .conv64 = nn .Conv2d (1 , 64 , 3 , padding = 1 )
17
+ self .conv64 = nn .Conv2d (3 , 64 , 3 , padding = 1 )
15
18
self .conv128 = nn .Conv2d (64 , 128 , 3 , padding = 1 )
16
19
self .conv256 = nn .Conv2d (128 , 256 , 3 , padding = 1 )
17
20
self .conv512 = nn .Conv2d (256 , 512 , 3 , padding = 1 )
@@ -24,7 +27,7 @@ def __init__(self):
24
27
self .dconv256 = nn .Conv2d (256 , 128 , 3 , padding = 1 )
25
28
self .upconv128 = nn .ConvTranspose2d (128 , 64 , 2 , stride = 2 )
26
29
self .dconv128 = nn .Conv2d (128 , 64 , 3 , padding = 1 )
27
- self .conv1 = nn .Conv2d (64 , 2 , 1 )
30
+ self .conv1 = nn .Conv2d (64 , 182 , 1 )
28
31
self .pool = nn .MaxPool2d (2 , 2 )
29
32
30
33
def forward (self , x ):
@@ -51,6 +54,16 @@ def forward(self, x):
51
54
###########
52
55
# Load Dataset #
53
56
###########
57
+ ims , labs = loadCOCO ("/home/toni/Data/COCOstuff/" )
58
+ imsT = torch .Tensor (ims )
59
+ labsT = torch .ByteTensor (labs )
60
+ trainset = TensorDataset (imsT , labsT )
61
+ trainloader = torch .utils .data .DataLoader (
62
+ trainset ,
63
+ batch_size = 4 ,
64
+ shuffle = True ,
65
+ num_workers = 2
66
+ )
54
67
55
68
56
69
net = Net ()
0 commit comments