-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbi-gram-counter.py
54 lines (32 loc) · 1.25 KB
/
bi-gram-counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import midi
import glob
import os
from midi.utils import midiread, midiwrite
import theano
import theano.tensor as T
import cPickle as pkl
probability = [ [ [[0.0]*2 for x in range(88)] for y in range(2)] for z in range(88) ]
def modeling_n_gram(n, files):
assert len(files) > 0, 'Training set is empty!' \
' (did you download the data files?)'
for f in files:
print 'parsing', f
each = midiread(f).piano_roll.astype(theano.config.floatX)
numNote = len(each[0])
# each [ time ] [ note ]
for timeSlice in range(n-1, len(each)):
for noteDest in range(numNote):
valueDest = int(each[timeSlice][noteDest])
for noteFrom in range(numNote):
valueFrom = int(each[timeSlice-1][noteFrom])
#print noteDest,valueDest,noteFrom,valueFrom
probability[noteDest][valueDest][noteFrom][valueFrom] \
= probability[noteDest][valueDest][noteFrom][valueFrom] + 1.0
print 'learning_done'
pkl.dump(probability, open("bi-gram-count.dat", "wb"))
print 'bi-gram-count.dat saved'
if __name__ == "__main__":
re = os.path.join(os.path.split(os.path.dirname(__file__))[0],
'data', 'Nottingham', 'train', '*.mid')
files = glob.glob(re)
modeling_n_gram(2, files)