-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbutterworth_bandpass.py
59 lines (42 loc) · 1.5 KB
/
butterworth_bandpass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from scipy import signal
from matplotlib import pyplot as plt
from matplotlib import style
import numpy as np
# import sampling rate and time stamp from noise_signal module
from noise_signal import t, my_signal
# Critcal Frequencies
lowcut = 200
highcut = 700
def band_butter(sig, time, crit_low, crit_high, order):
# sampling frequency
Fs = len(time)/max(time)
# nyquist frequency
Fn = 0.5*Fs
# normalize critical frequencies
low = lowcut/Fn
high = highcut/Fn
# filter coefficients
b,a = signal.butter(order,[low,high],btype='band')
# filtered signal
sig_filt = signal.lfilter(b,a,sig)
# frequency response
w,h = signal.freqz(b,a,worN=2000)
# Plots
style.use('ggplot')
style.use('dark_background')
plt.title('Filter Frequency Response')
plt.plot((Fs*0.5/np.pi)*w, abs(h),label = f'order={order}', color = 'orange')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain')
plt.grid()
plt.legend(loc='best')
f,plt_arr= plt.subplots(2,sharex=True)
plt_arr[0].plot(time, sig, color ='red')
plt_arr[0].set_title('Input Signal', color ='red')
plt_arr[0].set_ylabel('Amplitude')
plt_arr[1].plot(time, sig_filt,color='cyan')
plt_arr[1].set_title('Filtered Signal', color ='cyan')
plt_arr[1].set_ylabel('Amplitude')
plt_arr[1].set_xlabel('time (seconds)')
plt.show()
band_butter(my_signal, t, lowcut, highcut, 6)