|
| 1 | +import torch |
| 2 | +import torch.nn as nn |
| 3 | +import torch.optim as optim |
| 4 | + |
| 5 | +import torchvision |
| 6 | +import torchvision.transforms as transforms |
| 7 | + |
| 8 | +import matplotlib.pyplot as plt |
| 9 | +import numpy as np |
| 10 | + |
| 11 | +# ========================================= # |
| 12 | +# Load and normalize the data # |
| 13 | +# ========================================= # |
| 14 | + |
| 15 | +transform = transforms.Compose([ |
| 16 | + transforms.ToTensor(), |
| 17 | + transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) |
| 18 | +]) |
| 19 | + |
| 20 | +batch_size = 4 |
| 21 | +train_data = torchvision.datasets.CIFAR10( |
| 22 | + root='data', |
| 23 | + train=True, |
| 24 | + download=True, |
| 25 | + transform=transform |
| 26 | +) |
| 27 | + |
| 28 | +test_data = torchvision.datasets.CIFAR10( |
| 29 | + root='data', |
| 30 | + train=False, |
| 31 | + download=True, |
| 32 | + transform=transform |
| 33 | +) |
| 34 | + |
| 35 | +train_loader = torch.utils.data.DataLoader( |
| 36 | + dataset=train_data, |
| 37 | + batch_size=batch_size, |
| 38 | + shuffle=True |
| 39 | +) |
| 40 | + |
| 41 | +test_loader = torch.utils.data.DataLoader( |
| 42 | + dataset=test_data, |
| 43 | + batch_size=batch_size, |
| 44 | + shuffle=False |
| 45 | +) |
| 46 | + |
| 47 | +classes = ('plane', 'car', 'bird', 'cat', |
| 48 | + 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') |
| 49 | + |
| 50 | + |
| 51 | +# ========================================= # |
| 52 | +# Visualize Training Images # |
| 53 | +# ========================================= # |
| 54 | + |
| 55 | +def imshow(img): |
| 56 | + img = img / 2 + 0.5 # unnormalize |
| 57 | + npimg = img.numpy() |
| 58 | + plt.imshow(np.transpose(npimg, (1, 2, 0))) |
| 59 | + plt.show() |
| 60 | + |
| 61 | + |
| 62 | +# Get some random training images |
| 63 | +images, labels = next(iter(train_loader)) |
| 64 | +imshow(torchvision.utils.make_grid(images)) |
| 65 | + |
| 66 | +# Print labels |
| 67 | +print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size))) |
| 68 | + |
| 69 | + |
| 70 | +# ========================================= # |
| 71 | +# Define Convolutional Neural Network # |
| 72 | +# ========================================= # |
| 73 | + |
| 74 | +class Net(nn.Module): |
| 75 | + def __init__(self): |
| 76 | + super(Net, self).__init__() |
| 77 | + self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5) |
| 78 | + self.pool = nn.MaxPool2d(kernel_size=2, stride=2) |
| 79 | + self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) |
| 80 | + self.fc1 = nn.Linear(in_features=16 * 5 * 5, out_features=120) |
| 81 | + self.fc2 = nn.Linear(in_features=120, out_features=84) |
| 82 | + self.fc3 = nn.Linear(in_features=84, out_features=10) |
| 83 | + |
| 84 | + def forward(self, x): |
| 85 | + x = self.conv1(x) |
| 86 | + x = torch.relu(x) |
| 87 | + x = self.pool(x) |
| 88 | + |
| 89 | + x = self.conv2(x) |
| 90 | + x = torch.relu(x) |
| 91 | + x = self.pool(x) |
| 92 | + |
| 93 | + x = x.view(-1, 16 * 5 * 5) |
| 94 | + |
| 95 | + x = self.fc1(x) |
| 96 | + x = torch.relu(x) |
| 97 | + |
| 98 | + x = self.fc2(x) |
| 99 | + x = torch.relu(x) |
| 100 | + |
| 101 | + x = self.fc3(x) |
| 102 | + |
| 103 | + return x |
| 104 | + |
| 105 | + |
| 106 | +net = Net() |
| 107 | + |
| 108 | +# ========================================= # |
| 109 | +# Define a Loss function and Optimizer # |
| 110 | +# ========================================= # |
| 111 | + |
| 112 | +criterion = nn.CrossEntropyLoss() |
| 113 | +optimizer = optim.SGD(params=net.parameters(), lr=0.001, momentum=0.9) |
| 114 | + |
| 115 | +# ========================================= # |
| 116 | +# Train the network # |
| 117 | +# ========================================= # |
| 118 | + |
| 119 | +for epoch in range(2): # loop over the dataset multiple times |
| 120 | + |
| 121 | + running_loss = 0.0 |
| 122 | + for i, data in enumerate(train_loader, 0): |
| 123 | + # get the inputs; data is a list of [inputs, labels] |
| 124 | + inputs, labels = data |
| 125 | + |
| 126 | + # zero the parameter gradients |
| 127 | + optimizer.zero_grad() |
| 128 | + |
| 129 | + # forward + backward + optimize |
| 130 | + outputs = net(inputs) |
| 131 | + loss = criterion(outputs, labels) |
| 132 | + loss.backward() |
| 133 | + optimizer.step() |
| 134 | + |
| 135 | + # print statistics |
| 136 | + running_loss += loss.item() |
| 137 | + if i % 2000 == 1999: # print every 2000 mini-batches |
| 138 | + print('[%d, %5d] loss: %.3f' % |
| 139 | + (epoch + 1, i + 1, running_loss / 2000)) |
| 140 | + running_loss = 0.0 |
| 141 | + |
| 142 | +print('Finished Training') |
| 143 | + |
| 144 | +# Save the trained model |
| 145 | + |
| 146 | +PATH = './cifar_net.pth' |
| 147 | +torch.save(net.state_dict(), PATH) |
| 148 | + |
| 149 | +# ========================================= # |
| 150 | +# Test the network # |
| 151 | +# ========================================= # |
| 152 | + |
| 153 | +# Show test images |
| 154 | +images, labels = next(iter(test_loader)) |
| 155 | +imshow(torchvision.utils.make_grid(images)) |
| 156 | +print('Ground Truth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) |
| 157 | + |
| 158 | +# Load the model |
| 159 | +net = Net() |
| 160 | +net.load_state_dict(torch.load(PATH)) |
| 161 | + |
| 162 | +outputs = net(images) |
| 163 | +_, predicted = torch.max(outputs, 1) |
| 164 | +print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) |
| 165 | + |
| 166 | +# How network performs on whole test data |
| 167 | +correct = 0 |
| 168 | +total = 0 |
| 169 | +# For testing we don't need calculate gradients |
| 170 | +with torch.no_grad(): |
| 171 | + for data in test_loader: |
| 172 | + images, labels = data |
| 173 | + outputs = net(images) |
| 174 | + _, predicted = torch.max(outputs.data, 1) |
| 175 | + total += labels.size(0) |
| 176 | + correct += (predicted == labels).sum().item() |
| 177 | + |
| 178 | +print(f'Accuracy of the network on test data: {100 * correct / total}') |
| 179 | + |
| 180 | +# ========================================= # |
| 181 | +# Class-based Accuracy # |
| 182 | +# ========================================= # |
| 183 | + |
| 184 | +# prepare to count predictions for each class |
| 185 | +correct_pred = {classname: 0 for classname in classes} |
| 186 | +total_pred = {classname: 0 for classname in classes} |
| 187 | + |
| 188 | +# again no gradients needed |
| 189 | +with torch.no_grad(): |
| 190 | + for data in test_loader: |
| 191 | + images, labels = data |
| 192 | + outputs = net(images) |
| 193 | + _, predictions = torch.max(outputs, 1) |
| 194 | + # collect the correct predictions for each class |
| 195 | + for label, prediction in zip(labels, predictions): |
| 196 | + if label == prediction: |
| 197 | + correct_pred[classes[label]] += 1 |
| 198 | + total_pred[classes[label]] += 1 |
| 199 | + |
| 200 | +# print accuracy for each class |
| 201 | +for classname, correct_count in correct_pred.items(): |
| 202 | + accuracy = 100 * float(correct_count) / total_pred[classname] |
| 203 | + print("Accuracy for class {:5s} is: {:.1f} %".format(classname, |
| 204 | + accuracy)) |
0 commit comments