Lei Yang · Tao Tang · Jun Li · Kun Yuan · Peng Chen · Li Wang · Yi Huang · Lei Li · Xinyu Zhang · Kaicheng Yu
BEVHeight++ is a new vision-based 3D object detector specially designed for both roadside and vihicle-side scenarios. On popular 3D detection benchmarks of roadside cameras, BEVHeight++ surpasses all previous vision-centric methods by a significant margin. In terms of the ego-vehicle scenario, our BEVHeight++ also possesses superior over depth-only methods.
0. Installation as BEVDet
Download nuScenes dataset from official website.
ln -s [nuScenes-dataset-root] ./data/nuscenes
python tools/create_data_bevheight_plus.py
# stage 1:
bash tools/dist_train.sh configs/bevheight_plus/bevheight_plus-r50-depth-cbgs-first-stage.py 8
# stage 2:
mv [PTH_PATH_OF_STAGE_1] pretrained_model/epoch_20_ema.pth
bash tools/dist_train.sh configs/bevheight_plus/bevheight_plus-r50-depth-cbgs.py 8
bash tools/dist_test.sh configs/bevheight_plus/bevheight_plus-r50-depth-cbgs.py [PTH_PATH_OF_STAGE_2] 8 --eval mAP
Model | Backbone | mAP | mATE | mASE | mAOE | mAVE | mAAE | NDS | Config | Download |
---|---|---|---|---|---|---|---|---|---|---|
BEVHeight++ | V2-99 | 0.529 | 0.441 | 0.258 | 0.358 | 0.295 | 0.142 | 0.614 | config | model / log |
This project is not possible without the following codebases.
If you use BEVHeight++ in your research, please cite our work by using the following BibTeX entry:
@article{yang2023bevheight++,
title={Bevheight++: Toward robust visual centric 3d object detection},
author={Yang, Lei and Tang, Tao and Li, Jun and Chen, Peng and Yuan, Kun and Wang, Li and Huang, Yi and Zhang, Xinyu and Yu, Kaicheng},
journal={arXiv preprint arXiv:2309.16179},
year={2023}
}