-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_retriever_attn.py
345 lines (295 loc) · 13.7 KB
/
run_retriever_attn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# coding: utf-8
import os
import time
import math
import json
import pprint
import argparse
import pickle
from traceback import print_list
import torch.optim
from tqdm import tqdm
from src.models import *
from src.pre_data import *
from src.train_and_evaluate import *
from src.expressions_transfer import *
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertConfig, BertModel
from transformers import AdamW, get_linear_schedule_with_warmup
from torch.utils.tensorboard import SummaryWriter
def get_new_fold(data,pairs,group):
new_fold = []
for item,pair,g in zip(data, pairs, group):
pair = list(pair)
pair.append(g['group_num'])
pair = tuple(pair)
new_fold.append(pair)
return new_fold
def change_num(num):
new_num = []
for item in num:
if '/' in item:
new_str = item.split(')')[0]
new_str = new_str.split('(')[1]
a = float(new_str.split('/')[0])
b = float(new_str.split('/')[1])
value = a/b
new_num.append(value)
elif '%' in item:
value = float(item[0:-1])/100
new_num.append(value)
else:
new_num.append(float(item))
return new_num
def find_output_prefix(interpretation, output_prefix):
if interpretation == {}:
return
output_prefix.append(interpretation["op"])
find_output_prefix(interpretation["left"], output_prefix)
find_output_prefix(interpretation["right"], output_prefix)
def set_args():
parser = argparse.ArgumentParser(description = "bert2tree")
# 训练模型相关参数
parser.add_argument('--n_epochs', type=int, default=100)
parser.add_argument('--beam_size', type=int, default=5)
parser.add_argument('--max_seq_length', type=int, default=300)
parser.add_argument('--embedding_size', type=int, default=128)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--learning_rate_bert', type=float, default=5e-5)
parser.add_argument('--weight_decay_bert', type=float, default=1e-5)
parser.add_argument('--warmup_proportion', type=float, default=0.1)
parser.add_argument('--step_size', type=int, default=15)
parser.add_argument('--seed', type=int, default=100)
parser.add_argument('--weight_decay', type=float, default=1e-5)
# 训练控制相关
parser.add_argument('--debug', action='store_true', default=False)
parser.add_argument('--maskN', action='store_true', default=False)
# 数据相关参数
parser.add_argument('--train_data_path', type=str, default="data/train.json")
parser.add_argument('--valid_data_path', type=str, default="data/valid.json")
parser.add_argument('--test_data_path' , type=str, default="data/test.json")
parser.add_argument('--test_full_path' , type=str, default="data/test_full.json")
# 预训练模型路径
parser.add_argument('--logic_path', type=str, default="data/logic.json")
parser.add_argument('--bert_path', type=str, default="/data1/yangzhicheng/Data/models/chinese-bert-wwm")
# 存储相关参数
parser.add_argument('--save_path', type=str, default="model/retriever/SoftMarginLoss")
args = parser.parse_args()
return args
def setup_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
if USE_CUDA:
torch.cuda.manual_seed_all(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def evaluate_result(args, encoder, retriever, data_loader, logfile):
start = time.time()
loss_total = 0
predict = list()
target = list()
for valid_batch in tqdm(data_loader):
loss, predict_score = evaluate_retriever(
valid_batch['inter_multi_label'],
encoder, retriever,
valid_batch["token_ids"],
valid_batch["token_type_ids"],
valid_batch["attention_mask"],
logic_token_ids,
logic_attention_mask,
logic_token_type_ids
)
loss_total += loss
predict += predict_score
target += valid_batch["inter_prefix"]
R_list, P_list, Predict_list = recall_topk_all(predict, target)
F1_list = dict()
for key in R_list:
F1_list[key] = 2*R_list[key]*P_list[key] / (R_list[key]+P_list[key]+1e-9)
# print("loss:", loss_total / len(predict))
print(
"R1: %5f" %(R_list['1']) + \
" |R2: %5f" %(R_list['2']) + \
" |R3: %5f" %(R_list['3']) + \
" |R4: %5f" %(R_list['4']) + \
" |R5: %5f" %(R_list['5']) + \
" |R6: %5f" %(R_list['6'])
)
print(
"P1: %5f" %(P_list['1']) + \
" |P2: %5f" %(P_list['2']) + \
" |P3: %5f" %(P_list['3']) + \
" |P4: %5f" %(P_list['4']) + \
" |P5: %5f" %(P_list['5']) + \
" |P6: %5f" %(P_list['6'])
)
print(
"F1_1: %5f" %(F1_list['1']) + \
" |F1_2: %5f" %(F1_list['2']) + \
" |F1_3: %5f" %(F1_list['3']) + \
" |F1_4: %5f" %(F1_list['4']) + \
" |F1_5: %5f" %(F1_list['5']) + \
" |F1_6: %5f" %(F1_list['6'])
)
print("evaluating time", time_since(time.time() - start))
print("--------------------------------")
with open(logfile, 'a') as file_object:
# file_object.write("loss: %f\n" %(loss_total / len(predict)))
file_object.write(
"R1: %5f" %(R_list['1']) + \
" |R2: %5f" %(R_list['2']) + \
" |R3: %5f" %(R_list['3']) + \
" |R4: %5f" %(R_list['4']) + \
" |R5: %5f" %(R_list['5']) + \
" |R6: %5f" %(R_list['6'])
)
file_object.write(
"P1: %5f" %(P_list['1']) + \
" |P2: %5f" %(P_list['2']) + \
" |P3: %5f" %(P_list['3']) + \
" |P4: %5f" %(P_list['4']) + \
" |P5: %5f" %(P_list['5']) + \
" |P6: %5f" %(P_list['6'])
)
file_object.write(
"F1_1: %5f" %(F1_list['1']) + \
" |F1_2: %5f" %(F1_list['2']) + \
" |F1_3: %5f" %(F1_list['3']) + \
" |F1_4: %5f" %(F1_list['4']) + \
" |F1_5: %5f" %(F1_list['5']) + \
" |F1_6: %5f" %(F1_list['6'])
)
file_object.write("evaluating time " + str(time_since(time.time() - start)) + "\n")
file_object.write("--------------------------------\n")
# 存储时,需要对predict里的每一个id加1
for key in Predict_list:
Predict_list[key] = [[idx+1 for idx in line] for line in Predict_list[key]]
return R_list, P_list, F1_list, Predict_list
if __name__ == "__main__":
args = set_args()
#创建save文件夹
print("** save path:", args.save_path)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
print("make dir ", args.save_path)
log_writer = SummaryWriter()
setup_seed(args.seed)
tokenizer = BertTokenizer.from_pretrained(args.bert_path)
logic_token_ids, logic_attention_mask, logic_token_type_ids = tokenize_logic(
args.logic_path,
tokenizer,
)
train_fold, valid_fold, test_fold, generate_nums, copy_nums = process_data_pipeline(
args.train_data_path, args.valid_data_path, args.test_data_path, tokenizer,
debug=args.debug,
logic_path=args.logic_path,
mask=args.maskN,
)
print(generate_nums, copy_nums)
train_steps = args.n_epochs * math.ceil(len(train_fold) / args.batch_size)
output_lang, train_pairs, valid_pairs, test_pairs = prepare_bert_data(
train_fold, valid_fold, test_fold, generate_nums,
copy_nums, tokenizer, args.max_seq_length, tree=True)
print("output vocab:", output_lang.word2index)
print("--------------------------------------------------------------------------------------------------------------------------")
print("train_valid_test_len:", len(train_pairs), len(valid_pairs), len(test_pairs))
print("--------------------------------------------------------------------------------------------------------------------------")
generate_num_ids = []
for num in generate_nums:
generate_num_ids.append(output_lang.word2index[num])
# Initialize models
# encoder = Encoder_Bert(bert_path=args.bert_path)
encoder = BertModel.from_pretrained(args.bert_path)
# op_nums in Prediction: ['+', '-', '*', '/']
retriever = LogicAttn(hidden_size=encoder.config.hidden_size)
param_optimizer = list(encoder.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay_bert},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
encoder_optimizer = AdamW(optimizer_grouped_parameters,
lr = args.learning_rate_bert, # args.learning_rate - default is 5e-5
eps = 1e-8, # args.adam_epsilon - default is 1e-8.
correct_bias = False
)
encoder_scheduler = get_linear_schedule_with_warmup(encoder_optimizer,
num_warmup_steps = int(train_steps * args.warmup_proportion), # Default value in run_glue.py
num_training_steps = train_steps)
retriever_optimizer = torch.optim.Adam(retriever.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
retriever_scheduler = torch.optim.lr_scheduler.StepLR(retriever_optimizer, step_size=args.step_size, gamma=0.5)
# Move models to GPU
if USE_CUDA:
encoder.cuda()
retriever.cuda()
logfile = args.save_path + '/log'
with open(logfile, 'w') as file_object:
file_object.write("training procedure log \n")
train_data = MathWP_Dataset(train_pairs)
train_data_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=False, collate_fn=my_collate)
valid_data = MathWP_Dataset(valid_pairs)
valid_data_loader = DataLoader(valid_data, batch_size=args.batch_size, shuffle=False, collate_fn=my_collate)
test_data = MathWP_Dataset(test_pairs)
test_data_loader = DataLoader(test_data, batch_size=args.batch_size, shuffle=False, collate_fn=my_collate)
best_R = {'1':0, '2':0, '3':0, '4':0, '5':0, '6':0}
best_P = {'1':0, '2':0, '3':0, '4':0, '5':0, '6':0}
best_F = {'1':0, '2':0, '3':0, '4':0, '5':0, '6':0}
for epoch in range(args.n_epochs):
print('epoch:', epoch+1)
start = time.time()
random.seed(epoch + args.seed)
loss_total = 0
encoder_optimizer.zero_grad()
retriever_optimizer.zero_grad()
with open(logfile, 'a') as file_object:
file_object.write("epoch: %d \n"%(epoch + 1))
for batch in tqdm(train_data_loader):
loss_total += train_retriever(
batch['inter_multi_label'],
encoder, retriever, encoder_optimizer, encoder_scheduler, retriever_optimizer,
batch["token_ids"],
batch["token_type_ids"],
batch["attention_mask"],
logic_token_ids,
logic_attention_mask,
logic_token_type_ids
)
print("loss:", loss_total / len(train_data))
print("training time", time_since(time.time() - start))
print("--------------------------------")
with open(logfile, 'a') as file_object:
file_object.write("loss: %f\n" %(loss_total / len(train_data)))
file_object.write("training time " + str(time_since(time.time() - start)) + "\n")
file_object.write("--------------------------------\n")
retriever_scheduler.step()
valid_epoch = 1 #5 if epoch<0.35*args.n_epochs else 2
if (epoch+1) % valid_epoch == 0 or epoch > args.n_epochs-10:
encoder.eval()
retriever.eval()
print('** train result:')
R_train, P_train, F1_train, Predict_train = evaluate_result(args, encoder, retriever, train_data_loader, logfile)
print('** valid result:')
R_valid, P_valid, F1_valid, Predict_valid = evaluate_result(args, encoder, retriever, valid_data_loader, logfile)
print('** test result:')
R_test, P_test, F1_test, Predict_test = evaluate_result(args, encoder, retriever, test_data_loader, logfile)
for key in ['1', '2', '3', '4', '5', '6']:
if R_valid[key] >= best_R[key]:
best_R[key] = R_valid[key]
best_P[key] = P_valid[key]
best_F[key] = F1_valid[key]
torch.save(encoder.state_dict(), "%s/encoder_R" % (args.save_path) + key)
torch.save(retriever.state_dict(), "%s/retriever_R" % (args.save_path) + key)
with open (args.save_path + "/predicts_train_R"+key, 'wb') as f: #打开文件
pickle.dump(Predict_train[key], f)
with open (args.save_path + "/predicts_valid_R"+key, 'wb') as f: #打开文件
pickle.dump(Predict_valid[key], f)
with open (args.save_path + "/predicts_test_R"+key, 'wb') as f: #打开文件
pickle.dump(Predict_test[key], f)
print('## saving files: R'+key)
with open(logfile, 'a') as file_object:
file_object.write(str(best_R)+'\n')
file_object.write(str(best_P)+'\n')
file_object.write(str(best_F)+'\n')
print("--------------------------------------------------------------------------------------------------------------------------")