-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcifar_office.py
584 lines (474 loc) · 22.3 KB
/
cifar_office.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import torch
import torch.optim as optim
from logging import debug
import os
import time
import argparse
import json
import random
import numpy as np
import uuid
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Subset
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader, random_split
import timm
from pathlib import Path
from math import sqrt
from pycm import *
import sys
from torch.utils.data import Dataset, Subset, ConcatDataset
from torch.utils.data import ConcatDataset
import math
from tqdm import tqdm
import pandas as pd
import json
from typing import ValuesView
from loguru import logger
# from utils.utils import get_logger
import matplotlib.pyplot as plt
from dataset.selectedRotateImageFolder import prepare_test_data
from utils.cli_utils import *
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.utils.data import ConcatDataset
import torch
import torch.nn.functional as F
from enum import Enum
from typing import Callable, Dict, Optional, Sequence, Set, Tuple, Union
import tent
import eata
import sar
from cotta.imagenet import cotta
import poem
from sam import SAM
import timm
import protector as protect
from temperature_scaling import ModelWithTemperature, _ECELoss, TemperatureModel
import models.Res as Resnet
CORRUPTIONS = ("shot_noise", "motion_blur", "snow", "pixelate",
"gaussian_noise", "defocus_blur", "brightness", "fog",
"zoom_blur", "frost", "glass_blur", "impulse_noise", "contrast",
"jpeg_compression", "elastic_transform")
class BenchmarkDataset(Enum):
cifar_10 = 'cifar10'
cifar_100 = 'cifar100'
imagenet = 'imagenet'
def my_load_cifar10c(
n_examples: int,
severity: int = 5,
data_dir: str = './data',
shuffle: bool = False,
corruptions: Sequence[str] = CORRUPTIONS
) -> Tuple[torch.Tensor, torch.Tensor]:
return load_corruptions_cifar(BenchmarkDataset.cifar_10, n_examples,
severity, data_dir, corruptions, shuffle)
def load_corruptions_cifar(
dataset: BenchmarkDataset,
n_examples: int,
severity: int,
data_dir: str,
corruptions: Sequence[str] = CORRUPTIONS,
shuffle: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
assert 1 <= severity <= 5
n_total_cifar = 10000
if not os.path.exists(data_dir):
os.makedirs(data_dir)
data_dir = Path(data_dir)
data_root_dir = data_dir
if not data_root_dir.exists():
zenodo_download(*ZENODO_CORRUPTIONS_LINKS[dataset], save_dir=data_dir)
# Download labels
labels_path = data_root_dir / 'labels.npy'
if not os.path.isfile(labels_path):
raise DownloadError("Labels are missing, try to re-download them.")
labels = np.load(labels_path)
x_test_list, y_test_list = [], []
n_pert = len(corruptions)
for corruption in corruptions:
corruption_file_path = data_root_dir / (corruption + '.npy')
if not corruption_file_path.is_file():
raise DownloadError(
f"{corruption} file is missing, try to re-download it.")
images_all = np.load(corruption_file_path)
images = images_all[(severity - 1) * n_total_cifar:severity *
n_total_cifar]
n_img = int(np.ceil(n_examples / n_pert))
x_test_list.append(images[:n_img])
# Duplicate the same labels potentially multiple times
y_test_list.append(labels[:n_img])
x_test, y_test = np.concatenate(x_test_list), np.concatenate(y_test_list)
if shuffle:
rand_idx = np.random.permutation(np.arange(len(x_test)))
x_test, y_test = x_test[rand_idx], y_test[rand_idx]
# Make it in the PyTorch format
x_test = np.transpose(x_test, (0, 3, 1, 2))
# Make it compatible with our models
x_test = x_test.astype(np.float32) / 255
# Make sure that we get exactly n_examples but not a few samples more
x_test = torch.tensor(x_test)[:n_examples]
y_test = torch.tensor(y_test)[:n_examples]
return x_test, y_test
class BasicDataset(Dataset):
def __init__(self, x, y, transform=None):
self.x = x
self.y = y
self.transform = transform
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
if self.transform:
return self.transform(self.x[idx]), self.y[idx]
return self.x[idx], self.y[idx]
def get_args():
parser = argparse.ArgumentParser(description='SAR exps')
# path
parser.add_argument('--dataset', default='cifar10', help='name of dataset')
parser.add_argument('--data', default='/datasets/ImageNet', help='path to dataset')
parser.add_argument('--data_corruption', default='/datasets/ImageNet/ImageNet-C', help='path to corruption dataset')
parser.add_argument('--v2_path', default='/datasets/ImageNet2/imagenetv2-matched-frequency-format-val/', help='path to corruption dataset')
parser.add_argument('--output', default='./exps', help='the output directory of this experiment')
parser.add_argument('--source_domain', default='Real World', help='name of source domain')
parser.add_argument('--target_domain', default='Real World', help='name of source domain')
parser.add_argument('--seed', default=2021, type=int, help='seed for initializing training. ')
parser.add_argument('--gpu', default=0, type=int, help='GPU id to use.')
parser.add_argument('--debug', default=False, type=bool, help='debug or not.')
# dataloader
parser.add_argument('--workers', default=8, type=int, help='number of data loading workers (default: 4)')
parser.add_argument('--test_batch_size', default=4, type=int, help='mini-batch size for testing, before default value is 4')
parser.add_argument('--if_shuffle', default=True, type=bool, help='if shuffle the test set.')
# corruption settings
parser.add_argument('--level', default=5, type=int, help='corruption level of test(val) set.')
parser.add_argument('--corruption', default='gaussian_noise', type=str, help='corruption type of test(val) set.')
# eata settings
parser.add_argument('--fisher_size', default=2000, type=int, help='number of samples to compute fisher information matrix.')
parser.add_argument('--fisher_alpha', type=float, default=2000., help='the trade-off between entropy and regularization loss, in Eqn. (8)')
parser.add_argument('--e_margin', type=float, default=math.log(1000)*0.40, help='entropy margin E_0 in Eqn. (3) for filtering reliable samples')
parser.add_argument('--d_margin', type=float, default=0.05, help='\epsilon in Eqn. (5) for filtering redundant samples')
# Exp Settings
parser.add_argument('--method', default='eata', type=str, help='no_adapt, tent, eata, sar, cotta, poem')
parser.add_argument('--model', default='resnet50_gn_timm', type=str, help='resnet50_gn_timm or resnet50_bn_torch or vitbase_timm')
parser.add_argument('--exp_type', default='normal', type=str, help='normal, continual, bs1, in_dist, natural_shift, severity_shift, eps_cdf, martingale')
parser.add_argument('--cont_size', default=7500, type=int, help='each corruption size for continual type')
parser.add_argument('--severity_list', nargs="+", type=int, default=[5, 4, 3, 2, 1, 2, 3, 4, 5])
parser.add_argument('--temp', type=float, default=1, help='temperature for the model to be calibrated')
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--exp_comment', type=str, default='')
# SAR parameters
parser.add_argument('--sar_margin_e0', default=math.log(1000)*0.40, type=float, help='the threshold for reliable minimization in SAR, Eqn. (2)')
parser.add_argument('--imbalance_ratio', default=500000, type=float, help='imbalance ratio for label shift exps, selected from [1, 1000, 2000, 3000, 4000, 5000, 500000], 1 denotes totally uniform and 500000 denotes (almost the same to Pure Class Order). See Section 4.3 for details;')
# PEM parameters
parser.add_argument('--gamma', type=float, help='protector\'s gamma', default=1 / (8 * sqrt(3)))
parser.add_argument('--eps_clip', type=float, help='clipping value for epsilon during protection', default=1.80)
parser.add_argument('--lr_factor', type=float, default=1, help='multiplies the learning rate for poem')
parser.add_argument('--vanilla_loss', action='store_false', dest='vanilla_loss', help='Use vanilla match loss (not l match ++).')
return parser.parse_args()
def run(data_loader, model, args):
ents = []
accs1 = []
accs5 = []
logits_list = []
labels_list = []
batch_time = AverageMeter('Time', ':6.3f')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(data_loader),
[batch_time, top1, top5],
prefix='Test: ')
model.eval()
end = time.time()
with torch.no_grad():
for i, dl in enumerate(data_loader):
images, target = dl[0], dl[1]
if args.gpu is not None:
images = images.cuda()
if torch.cuda.is_available():
target = target.cuda()
# compute output
output = model(images).detach()
# _, targets = output.max(1)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
accs1.extend(acc1.tolist())
accs5.extend(acc5.tolist())
logits_list.append(output)
labels_list.append(target)
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
ents.extend(softmax_ent(output).tolist())
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# break
if i % args.print_freq == 0:
progress.display(i)
if i > 10 and args.debug:
break
with torch.no_grad():
logits = torch.cat(logits_list).cuda()
labels = torch.cat(labels_list).cuda()
ece_criterion = _ECELoss().cuda()
ece = ece_criterion(logits, labels.view(-1)).item()
base_model = get_model(args)
model_delta = get_models_delta(model, base_model.to(args.device))
info = {
'top1': top1.avg.item(),
'top5': top5.avg.item(),
'accs1': accs1,
'accs5': accs5,
'ents': ents,
'ece':ece,
'model_delta': model_delta,
}
return info
def get_model(args):
# build model for adaptation
bs = args.test_batch_size
# net = load_model('Addepalli2021Towards_WRN34', "./ckpt", 'cifar10', ThreatModel.corruptions).cuda()
if args.dataset == 'cifar10':
net = torch.hub.load("chenyaofo/pytorch-cifar-models", "cifar10_resnet32", pretrained=True).cuda()
elif args.dataset == 'cifar100':
net = torch.hub.load("chenyaofo/pytorch-cifar-models", "cifar100_resnet32", pretrained=True).cuda()
elif args.dataset == 'office_home':
# Load the model architecture (make sure this matches the architecture you used for training)
if args.model == "resnet50_gn_timm":
net = timm.create_model('resnet50_gn', pretrained=False, num_classes=65).cuda()
elif args.model == "vitbase_timm":
net = timm.create_model('vit_base_patch16_224', pretrained=False, num_classes=65).cuda()
else:
raise "Not implemented"
# Load the saved state dictionary
ret = net.load_state_dict(torch.load(f'models/office_home_pretrained/{args.source_domain.split()[0]}_{args.model}_{args.seed}_best.pth'))
print(ret)
else:
raise "Not valid dataset"
# For cifar10 temp is 1.8
# For cifar100 temp is 10000000
net = ModelWithTemperature(net, args.temp)
net.eval()
return net
def run_comparison(test_loader, holdout_loader, holdout_dataset, args):
# No Adapt
start = time.time()
net = get_model(args)
info_no_adapt = run(test_loader, net, args)
end = time.time()
info_no_adapt['runtime'] = end - start
# Tent
start = time.time()
net = get_model(args)
net = tent.configure_model(net)
params, param_names = tent.collect_params(net)
# logger.info(param_names)
optimizer = torch.optim.SGD(params, args.lr, momentum=0.9)
tented_model = tent.Tent(net, optimizer)
tent_info = run(test_loader, tented_model, args)
end = time.time()
tent_info['runtime'] = end - start
# EATA
start = time.time()
num_samples = min(args.fisher_size, len(holdout_dataset))
indices = torch.randperm(len(holdout_dataset), generator=torch.Generator().manual_seed(args.seed)).tolist()[:num_samples]
logger.info('prepping fisher dataset + matrix')
fisher_dataset = Subset(holdout_dataset, indices)
fisher_loader = torch.utils.data.DataLoader(fisher_dataset, batch_size=args.test_batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
net = get_model(args)
# fisher_loader = holdout_loader
net = eata.configure_model(net)
params, param_names = eata.collect_params(net)
# fishers = None
ewc_optimizer = torch.optim.SGD(params, 0.001)
fishers = {}
train_loss_fn = nn.CrossEntropyLoss().cuda()
for iter_, (images, targets) in enumerate(fisher_loader, start=1):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
if torch.cuda.is_available():
targets = targets.cuda(args.gpu, non_blocking=True)
outputs = net(images)
_, targets = outputs.max(1)
loss = train_loss_fn(outputs, targets)
loss.backward()
for name, param in net.named_parameters():
if param.grad is not None:
if iter_ > 1:
fisher = param.grad.data.clone().detach() ** 2 + fishers[name][0]
else:
fisher = param.grad.data.clone().detach() ** 2
if iter_ == len(fisher_loader):
fisher = fisher / iter_
fishers.update({name: [fisher, param.data.clone().detach()]})
ewc_optimizer.zero_grad()
logger.info("compute fisher matrices finished")
del ewc_optimizer
optimizer = torch.optim.SGD(params, args.lr, momentum=0.9)
adapt_model = eata.EATA(net, optimizer, fishers, args.fisher_alpha, e_margin=args.e_margin, d_margin=args.d_margin)
eata_info = run(test_loader, adapt_model, args)
end = time.time()
eata_info['runtime'] = end - start
# SAR
start = time.time()
net = get_model(args)
net = sar.configure_model(net)
params, param_names = sar.collect_params(net)
logger.info(param_names)
base_optimizer = torch.optim.SGD
optimizer = SAM(params, base_optimizer, lr=args.lr, momentum=0.9)
adapt_model = sar.SAR(net, optimizer, margin_e0=args.sar_margin_e0)
sar_info = run(test_loader, adapt_model, args)
end = time.time()
sar_info['runtime'] = end - start
# POEM
start = time.time()
net = get_model(args)
info_on_holdout = run(holdout_loader, net, args)
info_on_holdout['method'] = 'holdout'
info_on_holdout.update(**vars(args))
# resetting the model
net = sar.configure_model(net)
params, param_names = sar.collect_params(net)
if args.exp_type == 'martingale':
args.adapt = i % 2 == 0
protector = protect.get_protector_from_ents(info_on_holdout['ents'], args)
optimizer = torch.optim.SGD(params, args.lr, momentum=0.9)
adapt_model = poem.POEM(net, optimizer, protector, e0=args.sar_margin_e0, adapt=True, vanilla_loss=False)
poem_info = run(test_loader, adapt_model, args)
end = time.time()
poem_info['runtime'] = end - start
window_size = args.cont_size // args.bs
data = [
{
'method': 'no_adapt',
'corruption_acc': np.array(info_no_adapt['accs1']).reshape(-1, window_size).mean(axis=1),
'top1': info_no_adapt['top1'],
'runtime': info_no_adapt['runtime']
},
{
'method': 'tent',
'corruption_acc': np.array(tent_info['accs1']).reshape(-1, window_size).mean(axis=1),
'top1': tent_info['top1'],
'runtime': tent_info['runtime']
},
{
'method': 'eata',
'corruption_acc': np.array(eata_info['accs1']).reshape(-1, window_size).mean(axis=1),
'top1': eata_info['top1'],
'runtime': eata_info['runtime']
},
{
'method': 'sar',
'corruption_acc': np.array(sar_info['accs1']).reshape(-1, window_size).mean(axis=1),
'top1': sar_info['top1'],
'runtime': sar_info['runtime']
},
{
'method': 'poem',
'corruption_acc': np.array(poem_info['accs1']).reshape(-1, window_size).mean(axis=1),
'top1': poem_info['top1'],
'runtime': poem_info['runtime']
}
]
args.timestamp = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
args.exp_name = args.timestamp + "seed{}".format(args.seed) + "_" + str(uuid.uuid4())[:6]
output_path = Path(args.output) / args.dataset / 'cont_long' / args.exp_name
output_path.parent.mkdir(exist_ok=True, parents=True)
df = pd.DataFrame(data)
df['model'] = args.model
df['lr'] = args.lr
df['dataset'] = args.dataset
df['source_domain'] = args.source_domain
df['target_domain'] = args.target_domain
df['seed'] = args.seed
df['temp'] = args.temp
df['bs'] = args.bs
df['cont_size'] = args.cont_size
df.to_csv(f'{output_path}.csv', index=False)
if __name__ == '__main__':
args = get_args()
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
args.bs = args.test_batch_size
args.print_freq = 4000 // 20 // args.bs
n_examples = 10000
severity = args.level
datasets = []
holdout_indices, test_indices = torch.tensor_split(torch.randperm(n_examples, generator=torch.Generator().manual_seed(args.seed)), [int(n_examples * 0.25)])
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2471, 0.2435, 0.2616))
])
# CONTINUAL
if args.dataset in ['cifar10', 'cifar100']:
for corruption in tqdm(CORRUPTIONS):
# Load data for current corruption
if args.dataset == 'cifar10':
x, y = my_load_cifar10c(n_examples, severity, './data/CIFAR-10-C', False, [corruption])
elif args.dataset == 'cifar100':
x, y = my_load_cifar10c(n_examples, severity, './data/CIFAR-100-C', False, [corruption])
else:
raise "not valid dataset"
# Split into test set
x_test, y_test = x[test_indices, ...], y[test_indices, ...]
# Randomly sample 1000 examples
# Permute all examples
sample_indices = random.sample(range(len(x_test)), args.cont_size)
x_sample = x_test[sample_indices]
y_sample = y_test[sample_indices]
# Create BasicDataset and append to list
datasets.append(BasicDataset(x_sample, y_sample))
# Combine all datasets into one
combined_dataset = ConcatDataset(datasets)
print(len(combined_dataset))
if args.dataset == 'cifar10':
original_ds = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
elif args.dataset == 'cifar100':
original_ds = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=transform)
else:
raise "not valid dataset"
holdout_dataset = Subset(original_ds, holdout_indices.tolist())
cifar10_test = Subset(original_ds, test_indices.tolist())
holdout_loader = DataLoader(holdout_dataset, num_workers=8, batch_size=args.bs, shuffle=False)
test_loader = DataLoader(combined_dataset, num_workers=8, batch_size=args.bs, shuffle=False)
elif args.dataset == 'office_home':
transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
augment_transform = transforms.Compose([
# transforms.Resize((224,224)),
transforms.RandomResizedCrop(224, scale=(0.7, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(0.3, 0.3, 0.3, 0.3),
transforms.RandomGrayscale(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
all_domains = ['Art', 'Clipart', 'Product', 'Real World']
other_domains = [domain for domain in all_domains if domain != args.source_domain]
full_dataset = ImageFolder(f'./data/office_home/{args.source_domain}', transform=transform)
# Split the dataset
train_dataset, val_dataset = random_split(full_dataset, [0.8, 0.2], generator=torch.Generator().manual_seed(args.seed))
holdout_dataset = val_dataset
holdout_loader = DataLoader(val_dataset, batch_size=args.test_batch_size, shuffle=False, num_workers=8)
datasets = {}
for target_domain in other_domains:
original_dataset = ImageFolder(f'./data/office_home/{target_domain}', transform=transform)
num_samples = len(original_dataset)
# Generate a random permutation of indices
indices = torch.randperm(num_samples).tolist()
datasets[target_domain] = Subset(original_dataset, indices)
test_loaders = {domain: DataLoader(datasets[domain], batch_size=args.test_batch_size, shuffle=False, num_workers=8) for domain in other_domains}
else:
raise "Not implemented"
if args.dataset == 'office_home':
for domain, test_loader in test_loaders.items():
print(domain)
args.target_domain = domain
run_comparison(test_loader, holdout_loader, holdout_dataset, args)
elif args.dataset in ['cifar10', 'cifar100']:
run_comparison(test_loader, holdout_loader, holdout_dataset, args)