-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_mot_autoencoder_gpu.py
557 lines (460 loc) · 22.2 KB
/
img_mot_autoencoder_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
"""
Processing image-motion dataset and time-delay neural network for learning image-motion sequences.
author: yajue
date: 20171009
"""
import re, os, glob, random, time
from chainer import serializers, Chain, cuda, Variable
import chainer.links as L
import chainer.functions as F
import chainer.optimizers as O
from img_autoencoder_gpu import ImageAENetwork, TaskImageDataset
import numpy as np
import chainer
import utils
import sys
import matplotlib.pyplot as plt
class ImgMotLSTM(Chain):
def __init__(self, net_idx, train=True):
super(ImgMotLSTM, self).__init__()
with self.init_scope():
self.net_idx = net_idx
if self.net_idx == 1:
self.l1 = L.Linear(26, 150)
self.l2 = L.LSTM(150, 150)
self.l3 = L.Linear(150, 26)
elif self.net_idx == 2:
self.l1 = L.LSTM(36, 15)
self.l2 = L.Linear(15, 6)
elif self.net_idx == 3:
self.l1 = L.Linear(26, 150)
self.l2 = L.LSTM(150, 150)
self.l3 = L.LSTM(150, 150)
self.l4 = L.Linear(150, 26)
elif self.net_idx == 4:
self.l1 = L.Linear(16, 150)
self.l2 = L.LSTM(150, 150)
self.l3 = L.LSTM(150, 150)
self.l4 = L.Linear(150, 16)
elif self.net_idx == 5:
self.l1 = L.Linear(16, 10)
self.l2 = L.LSTM(10, 10)
self.l3 = L.Linear(10, 16)
else:
print('ERROR: No network{}'.format(self.net_idx))
sys.exit()
self.train = train
def run_net1(self, x):
h = self.l1(x)
h = self.l2(h)
y = self.l3(h)
return y
def run_net2(self, x):
h = self.l1(x)
y = self.l2(h)
return y
def run_net3(self, x):
h = self.l1(x)
h = self.l2(h)
h = self.l3(h)
y = self.l4(h)
return y
def run_net4(self, x):
h = self.l1(x)
h = self.l2(h)
h = self.l3(h)
y = self.l4(h)
return y
def run_net5(self, x):
h = self.l1(x)
h = F.leaky_relu(h)
# h = F.dropout(h, ratio=0.2)
h = self.l2(h)
h = F.leaky_relu(h)
y = self.l3(h)
return y
def __call__(self, x, t):
if self.net_idx == 1:
y = self.run_net1(x)
elif self.net_idx == 2:
y = self.run_net2(x)
elif self.net_idx == 3:
y = self.run_net3(x)
elif self.net_idx == 4:
y = self.run_net4(x)
elif self.net_idx == 5:
y = self.run_net5(x)
else:
print('ERROR: No network{}'.format(self.net_idx))
sys.exit()
self.loss = F.mean_squared_error(y, t)
if self.train:
return self.loss
else:
self.prediction = y
return self.prediction
def reset_state(self):
if self.net_idx == 1:
self.l2.reset_state()
elif self.net_idx == 2:
self.l1.reset_state()
elif self.net_idx == 3:
self.l2.reset_state()
self.l3.reset_state()
elif self.net_idx == 4:
self.l2.reset_state()
self.l3.reset_state()
elif self.net_idx == 5:
self.l2.reset_state()
else:
print('ERROR: No network{}'.format(self.net_idx))
sys.exit()
class IJSeqMaker(object):
def __init__(self, img_model_file, img_mot_paths, imgnet_idx, time_window, img_feature_dim):
"""
Initialization.
:param img_model_file: Existing well trained Image AutoEncoder model file name
:param img_mot_paths: A list of paths of directories containing images and robot motion files
:param index of image autoencoder network
:param time_window: Time window
:param img_feature_dim: Dimension of image feature
author: yajue
date: 20171023
"""
# load a well trained Image AutoEncoder network
self.img_model = ImageAENetwork(imgnet_idx)
print('image network index: ', imgnet_idx)
serializers.load_npz(img_model_file, self.img_model)
# load mean image
mean_img_name = img_model_file.rstrip('.model') + 'meanImg.npy'
self.mean_img = np.load(mean_img_name)
# print('mean image shape: ', self.mean_img.shape)
self.img_mot_paths = []
self.img_mot_paths = img_mot_paths
self.time_window = time_window
self.img_feature_dim = img_feature_dim
self.img_mot_dim = self.img_feature_dim + 6
self.dataset = []
self.num_data = len(self.dataset)
# min-max joint angles
self.joint_minmax = np.ndarray((2, 6))
# average image feature and joint angles
self.avg_imgft = None
self.avg_jt = None
def calc_joint_minmax(self, joint_angles):
print(joint_angles.shape)
jtmin_along_grp = np.min(joint_angles, axis=0)
jtmin = np.min(jtmin_along_grp, axis=0)
jtmax_along_grp = np.max(joint_angles, axis=0)
jtmax = np.max(jtmax_along_grp, axis=0)
self.joint_minmax[0, :] = jtmin - 0.02
self.joint_minmax[1, :] = jtmax[:] + 0.02
print('joint min max: ', self.joint_minmax)
def numerical_sort(self, value):
"""
Splits out any digits in a filename, turns it into an actual number, and returns the result for sorting.
:param value: filename
:return:
author: yajue
date: 20171009
"""
numbers = re.compile(r'(\d+)')
parts = numbers.split(value)
parts[1::2] = map(int, parts[1::2])
return parts
def gen_dataset(self, start_steps, step_length):
print('img mot paths: ', self.img_mot_paths)
total_jt = np.empty((0, step_length, 6))
for path_idx in range(len(self.img_mot_paths)):
# get all images and extract features
path = self.img_mot_paths[path_idx]
os.chdir(path)
img_features = []
img_names = sorted(glob.glob('*.jpg'), key=self.numerical_sort)
img_dataset = TaskImageDataset(img_names, path)
for img_idx in range(start_steps[path_idx], start_steps[path_idx]+step_length):
# grayscale
img_arr = img_dataset.get_example(img_idx) - self.mean_img.transpose(2, 0, 1)
with chainer.using_config('train', False):
feature = self.img_model.encoder_layers(np.expand_dims(img_arr, axis=0))
assert feature.size == self.img_feature_dim
# feature data shape: (1, feature_dim)
img_features.append(feature.data.flatten())
# print(feature.data.shape)
# get all joint angles from the file
joint_file = os.path.join(path, 'joint_position.txt')
joint_angles = utils.load_joint_seq(joint_file, start_steps[path_idx], step_length)
joint_angles = np.array(joint_angles)
total_jt = np.append(total_jt, joint_angles[np.newaxis, :, :], axis=0)
# concatenate image features and joint angles
assert len(img_features) == len(joint_angles)
seq_length = len(img_features)
for idx in range(0, seq_length - self.time_window + 1):
img_joint = np.ndarray((self.img_mot_dim, self.time_window), dtype=np.float32)
for seq_idx in range(0, self.time_window):
img_joint[0:self.img_feature_dim, seq_idx] = img_features[idx + seq_idx].transpose()
img_joint[self.img_feature_dim:self.img_feature_dim+6, seq_idx] = joint_angles[idx + seq_idx].transpose()
self.dataset.append(img_joint)
self.num_data = len(self.dataset)
print('Number of sequences: ', len(self.dataset))
self.calc_joint_minmax(total_jt)
def gen_zc_dataset(self, start_steps, step_length):
"""
Generate zero-centered dataset
:param start_steps: starting step
:param step_length: length of the whole trajectory
:return:
author: yajue
date: 20171117
"""
# load all dataset to calculate average
total_imgft = np.empty((0, step_length, self.img_feature_dim))
total_jt = np.empty((0, step_length, 6))
for path_idx in range(len(self.img_mot_paths)):
# images
path = self.img_mot_paths[path_idx]
print(path)
os.chdir(path)
img_names = sorted(glob.glob('*.jpg'), key=self.numerical_sort)
img_dataset = TaskImageDataset(img_names, path)
grp_imgft = np.empty((0, self.img_feature_dim))
for img_idx in range(start_steps[path_idx], start_steps[path_idx]+step_length):
img_arr = img_dataset.get_example(img_idx) - self.mean_img.transpose(2, 0, 1)
with chainer.using_config('train', False):
feature = self.img_model.encoder_layers(np.expand_dims(img_arr, axis=0))
assert feature.size == self.img_feature_dim
grp_imgft = np.append(grp_imgft, feature.data, axis=0)
total_imgft = np.append(total_imgft, grp_imgft[np.newaxis, :, :], axis=0)
# joint angles
joint_file = os.path.join(path, 'joint_position.txt')
joint_angles = utils.load_joint_seq(joint_file, start_steps[path_idx], step_length)
joint_angles = np.array(joint_angles)
total_jt = np.append(total_jt, joint_angles[np.newaxis, :, :], axis=0)
# average data
self.avg_imgft = np.average(total_imgft, axis=0)
self.avg_jt = np.average(total_jt, axis=0)
# zero center data
total_imgft = total_imgft - self.avg_imgft
total_jt = total_jt - self.avg_jt
# print('total imgft: ', total_imgft)
# print('total jt: ', total_jt)
# concatenate image features and joint angles
for path_idx in range(len(self.img_mot_paths)):
for idx in range(0, step_length - self.time_window + 1):
img_joint = np.ndarray((self.img_mot_dim, self.time_window), dtype=np.float32)
for seq_idx in range(0, self.time_window):
img_joint[0:self.img_feature_dim, seq_idx] = total_imgft[path_idx, idx+seq_idx, :].transpose()
img_joint[-6:, seq_idx] = total_jt[path_idx, idx+seq_idx, :].transpose()
self.dataset.append(img_joint)
self.num_data = len(self.dataset)
print('Number of sequences: ', len(self.dataset))
# plt.figure(1)
# for f_idx in range(self.img_feature_dim):
# plt.subplot(self.img_feature_dim, 1, f_idx + 1)
# for grp_idx in range(total_imgft.shape[0]):
# plt.plot(total_imgft[grp_idx, :, f_idx], 'gray')
# plt.plot(self.avg_imgft[:, f_idx], 'r')
#
# plt.figure(2)
# for f_idx in range(6):
# plt.subplot(6, 1, f_idx + 1)
# for grp_idx in range(total_jt.shape[0]):
# plt.plot(total_jt[grp_idx, :, f_idx], 'gray')
# plt.plot(self.avg_jt[:, f_idx], 'r')
#
# plt.show()
def valid_gen_zc_dataset(self, start_steps, step_length, avg_jt, avg_imgft):
total_imgft = np.empty((0, step_length, self.img_feature_dim))
total_jt = np.empty((0, step_length, 6))
for path_idx in range(len(self.img_mot_paths)):
# images
path = self.img_mot_paths[path_idx]
print(path)
os.chdir(path)
img_names = sorted(glob.glob('*.jpg'), key=self.numerical_sort)
img_dataset = TaskImageDataset(img_names, path)
grp_imgft = np.empty((0, self.img_feature_dim))
for img_idx in range(start_steps[path_idx], start_steps[path_idx]+step_length):
img_arr = img_dataset.get_example(img_idx) - self.mean_img.transpose(2, 0, 1)
with chainer.using_config('train', False):
feature = self.img_model.encoder_layers(np.expand_dims(img_arr, axis=0))
assert feature.size == self.img_feature_dim
grp_imgft = np.append(grp_imgft, feature.data, axis=0)
total_imgft = np.append(total_imgft, grp_imgft[np.newaxis, :, :], axis=0)
# joint angles
joint_file = os.path.join(path, 'joint_position.txt')
joint_angles = utils.load_joint_seq(joint_file, start_steps[path_idx], step_length)
joint_angles = np.array(joint_angles)
total_jt = np.append(total_jt, joint_angles[np.newaxis, :, :], axis=0)
# zero center data
total_imgft = total_imgft - avg_imgft
total_jt = total_jt - avg_jt
# concatenate image features and joint angles
for path_idx in range(len(self.img_mot_paths)):
for idx in range(0, step_length - self.time_window + 1):
img_joint = np.ndarray((self.img_mot_dim, self.time_window), dtype=np.float32)
for seq_idx in range(0, self.time_window):
img_joint[0:self.img_feature_dim, seq_idx] = total_imgft[path_idx, idx+seq_idx, :].transpose()
img_joint[-6:, seq_idx] = total_jt[path_idx, idx+seq_idx, :].transpose()
self.dataset.append(img_joint)
self.num_data = len(self.dataset)
print('Number of sequences: ', len(self.dataset))
def get_minibatch_seqs(self, mini_batch_size):
sequences = np.ndarray((mini_batch_size, self.img_mot_dim, self.time_window), dtype=np.float32)
for i in range(mini_batch_size):
batch_idx = random.randint(0, len(self.dataset) - 1)
sequences[i] = self.dataset[batch_idx]
return sequences
def get_ordered_seq(self, index):
sequences = np.ndarray((1, self.img_mot_dim, self.time_window), dtype=np.float32)
sequences[0] = self.dataset[index]
return sequences
class ImgMotionTrain(object):
def __init__(self, model, max_iter, batch_size, save_model_name):
# network
self.model = model
# optimizer
self.optimizer = O.Adam()
self.optimizer.setup(self.model)
# self.optimizer.add_hook(chainer.optimizer.WeightDecay(0.0001))
# training parameters
self.max_iter = max_iter
self.batch_size = batch_size
self.save_model_name = save_model_name
def training(self, train_seqs_maker, valid_seqs_maker):
self.model.train = True
train_start = time.time()
loss_sum = cuda.cupy.zeros(1)
in_batch_iter = 0
epoch = 0
epoch_start = time.time()
model_root_name = r'/home/young/URLearning/model_gpu'
loss_file = ('TrainLoss' + self.save_model_name).rstrip('.model') + '.txt'
eval_file = ('EvalLoss' + self.save_model_name).rstrip('.model') + '.txt'
loss_f = open(os.path.join(model_root_name, loss_file), 'w')
eval_f = open(os.path.join(model_root_name, eval_file), 'w')
# save joint min-max of training dataset
# np.save(os.path.join(model_root_name, self.save_model_name.rstrip('.model') + 'minmaxJt.npy'), train_seqs_maker.joint_minmax)
# joint_min = train_seqs_maker.joint_minmax[0, :][np.newaxis, :, np.newaxis]
# joint_max = train_seqs_maker.joint_minmax[1, :][np.newaxis, :, np.newaxis]
# joint_range = joint_max - joint_min
# save joint average and image average
np.save(os.path.join(model_root_name, self.save_model_name.rstrip('.model') + 'avgJt.npy'), train_seqs_maker.avg_jt)
np.save(os.path.join(model_root_name, self.save_model_name.rstrip('.model') + 'avgImgFt.npy'), train_seqs_maker.avg_imgft)
img_feature_dim = train_seqs_maker.img_feature_dim
with chainer.using_config('train', True):
for iteration in range(self.max_iter):
batch_start = time.time()
sequences = train_seqs_maker.get_minibatch_seqs(self.batch_size)
# normalize joint angles to [-1, 1]
# sequences[:, -6:, :] = 2 * (sequences[:, -6:, :] - joint_min) / joint_range - 1
# normalize centered image feature to [-0.05, 0.05]
sequences[:, :img_feature_dim, :] = 0.1 * (sequences[:, :img_feature_dim, :] + 1) / 2 - 0.05
self.model.reset_state()
self.model.zerograds()
loss = self.compute_loss(sequences, img_feature_dim)
print('iteration:{} train_loss:{:.04f} iter_elapsed_time:{:.04f} min'.format(iteration,
float(loss.data),
time.time() - batch_start))
loss_sum += loss.data
loss.backward()
self.optimizer.update()
in_batch_iter += 1
if self.batch_size * (iteration + 1) // train_seqs_maker.num_data == (epoch + 1):
with chainer.using_config('train', False):
# validation
valid_iter = 0
valid_loss_sum = cuda.cupy.zeros(1)
while self.batch_size * (valid_iter + 1) // valid_seqs_maker.num_data < 1:
valid_seqs = valid_seqs_maker.get_minibatch_seqs(self.batch_size)
# normalize
# valid_seqs[:, -6:, :] = 2 * (valid_seqs[:, -6:, :] - joint_min) / joint_range - 1
# normalize centered image feature to [-0.05, 0.05]
valid_seqs[:, :img_feature_dim, :] = 0.1 * (valid_seqs[:, :img_feature_dim, :] + 1) / 2 - 0.05
self.model.reset_state()
valid_loss = self.compute_loss(valid_seqs, train_seqs_maker.img_feature_dim)
valid_loss_sum += valid_loss.data
valid_iter += 1
# record loss and save model
loss_avg = loss_sum / in_batch_iter / train_seqs_maker.time_window
valid_loss_avg = valid_loss_sum / valid_iter / valid_seqs_maker.time_window
serializers.save_npz(os.path.join(model_root_name, self.save_model_name), self.model)
loss_f.write(str(float(loss_avg)) + '\n')
eval_f.write(str(float(valid_loss_avg)) + '\n')
epoch += 1
print('epoch:{:02d} train_loss:{:.04f} val_loss:{:.04f} epoch_elapsed_time:{:.04f} min'.format(epoch, float(loss_avg), float(valid_loss_avg), (time.time() - epoch_start) / 60))
loss_sum = cuda.cupy.zeros(1)
in_batch_iter = 0
epoch_start = time.time()
serializers.save_npz(os.path.join(model_root_name, self.save_model_name), self.model)
print('training elapsed_time:{:.04f} hours'.format((time.time()-train_start) / 3600))
def compute_loss(self, sequences, img_feature_dim):
loss = 0
b_size, f_size, t_size = sequences.shape
first_joint = img_feature_dim
for i in range(t_size - 1):
x = Variable(cuda.to_gpu(sequences[:, :, i]))
if self.model.net_idx == 1:
t = Variable(cuda.to_gpu(sequences[:, :, i+1]))
loss += self.model(x, t)
elif self.model.net_idx == 2:
t = Variable(cuda.to_gpu(sequences[:, first_joint:first_joint+6, i+1]))
loss += self.model(x, t)
elif self.model.net_idx == 3:
t = Variable(cuda.to_gpu(sequences[:, :, i+1]))
loss += self.model(x, t)
elif self.model.net_idx == 4:
t = Variable(cuda.to_gpu(sequences[:, :, i+1]))
loss += self.model(x, t)
elif self.model.net_idx == 5:
t = Variable(cuda.to_gpu(sequences[:, :, i+1]))
loss += self.model(x, t)
return loss
def predict_sequence(model, input_seq, dummy):
b_size, f_size, t_size = input_seq.shape
model.reset_state()
for i in range(t_size):
x = Variable(cuda.cupy.asarray(input_seq[:, :, i:i+1], dtype=np.float32))
future = model(x, dummy)
cpu_future = cuda.to_cpu(future.data)
return cpu_future
if __name__ == "__main__":
np.set_printoptions(precision=8, suppress=True)
root_name = r'/home/young/URLearning'
img_model_file = os.path.join(root_name, 'model_gpu/GPU_ImgAE45.model')
train_ij_paths = []
valid_ij_paths = []
for grp_idx in range(1, 129):
path = os.path.join(root_name, 'scoop_dataset6/group' + str(grp_idx))
if grp_idx % 16 == 0:
valid_ij_paths.append(path)
else:
train_ij_paths.append(path)
# parameters
img_feature_dim = 10
ij_feature_dim = img_feature_dim + 6
imgnet_idx = 6
time_window = 70
step_length = 125
train_seq_maker = IJSeqMaker(img_model_file, train_ij_paths, imgnet_idx, time_window, img_feature_dim)
train_start_steps = [0] * len(train_ij_paths)
train_seq_maker.gen_zc_dataset(train_start_steps, step_length)
# train_seq_maker.gen_dataset(train_start_steps, step_length)
valid_seq_maker = IJSeqMaker(img_model_file, valid_ij_paths, imgnet_idx, time_window, img_feature_dim)
valid_start_steps = [0] * len(valid_ij_paths)
valid_seq_maker.valid_gen_zc_dataset(valid_start_steps, step_length, train_seq_maker.avg_jt, train_seq_maker.avg_imgft)
# valid_seq_maker.gen_dataset(valid_start_steps, step_length)
# set up lstm model
max_iteration = 20000
batch_size = 16
lstm_model_name = 'GPU_ImgMot46.model'
gpu_device = 0
cuda.get_device_from_id(gpu_device).use()
model = ImgMotLSTM(4)
model.to_gpu()
model_root_name = os.path.join(root_name, 'model_gpu')
"""
Train
"""
trainer = ImgMotionTrain(model, max_iteration, batch_size, lstm_model_name)
trainer.training(train_seq_maker, valid_seq_maker)