-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
165 lines (126 loc) · 4.54 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import jax
import jax.numpy as jnp
from jax import config
from jaxtyping import Array, Float
config.update("jax_enable_x64", True)
import lineax as lx
import time
import timeit
from jax.example_libraries import optimizers as jax_opt
import os
os.environ["XLA_PYTHON_CLIENT_PREALLOCATE"]="false"
import ott
from ott.geometry import pointcloud
from ott.problems.linear import linear_problem
from ott.solvers.linear import sinkhorn
import numpy as np
import SinkhornHessian
import util
import matplotlib
import matplotlib.pyplot as plt
import mpl_toolkits.axes_grid1
#%%
n = 50000
m = 100000
epsilon = 0.01
dim = 5
threshold = 0.01 / (n**0.33)
tau2 =1e-5
iter = 100
mu, nv1, x, y1 = util.sample_points_uniform(n, n, dim, 1)
mu1, nv, x1, y = util.sample_points_uniform(m, m, dim, 1)
#y = x
xT = x.T
yT = y.T
#%%
geom = pointcloud.PointCloud(x, y, epsilon=epsilon, batch_size=16)
prob = linear_problem.LinearProblem(geom, a=mu, b=nv)
solver = sinkhorn.Sinkhorn(
threshold=threshold, use_danskin=False, max_iterations=200000
#solve_kwargs={
#"implicit_diff": imp_diff.ImplicitDiff() if implicit else None}
)
out = solver(prob)
f = out.f
g = out.g
a = out.geom.apply_transport_from_potentials(f, g, jnp.ones(m), axis=1)
b = out.geom.apply_transport_from_potentials(f, g, jnp.ones(n), axis=0)
svd_thr = 1e-10
SH = SinkhornHessian.SinkhornHessian(svd_thr)
H = SH.LHS_matrix(out)
T = SH.compute_hessian(out)
A = np.random.randn(n, dim)
result = jnp.tensordot(T, A, axes=((2,3), (0,1)))
def RA(A,x,y,f,g,a):
vec1 = jnp.sum(x * A, axis=1)
Mat1 = out.geom.apply_transport_from_potentials(f,g,y.T,axis=1)
x1 = 2*(a * vec1 - jnp.sum(A * Mat1.T, axis=1))
Mat2 = out.geom.apply_transport_from_potentials(f,g,A.T,axis=0)
x2 = 2*(out.geom.apply_transport_from_potentials(f,g, vec1,axis=0) - jnp.sum(y * Mat2.T, axis=1))
return x1, x2
def RAT(AT,xT,yT,f,g,a):
vec1 = jnp.sum(xT * AT, axis=0)
Mat1 = out.geom.apply_transport_from_potentials(f,g,yT,axis=1)
x1 = 2*(a * vec1 - jnp.sum(AT * Mat1, axis=0))
Mat2 = out.geom.apply_transport_from_potentials(f,g,AT,axis=0)
x2 = 2*(out.geom.apply_transport_from_potentials(f,g, vec1,axis=0) - jnp.sum(yT * Mat2, axis=0))
return x1, x2
def RTz(z1, z2, f, g, yT, a):
vec1 = a * z1
Mat1 = x * vec1[:, None]
Mat2 = out.geom.apply_transport_from_potentials(f,g,yT,axis=1) * z1
vec2 = out.geom.apply_transport_from_potentials(f,g,z2,axis=1)
Mat3 = x * vec2[:, None]
Mat4 = out.geom.apply_transport_from_potentials(f, g, (yT * z2) , axis=1)
return 2*(Mat1 - Mat2.T + Mat3 - Mat4.T)
#%%
def solve_H_x(x1,x2, tau2, iter, epsilon, f, g, a, b):
apply_potentials_1 = jax.jit(lambda x: out.geom.apply_transport_from_potentials(f,g,x,axis=1))
apply_potentials_0 = jax.jit(lambda x: out.geom.apply_transport_from_potentials(f,g,x,axis=0))
y1= x1/(a)
y2 = -apply_potentials_0(y1) + x2
m = len(g)
#@jax.jit
def T(z: Float[Array, str(m)]) -> Float[Array, str(m)]:
piz = apply_potentials_1(z)
piT_over_a_piz = apply_potentials_0(piz/a)
return (b+epsilon*tau2)*z - piT_over_a_piz
in_structure = jax.eval_shape(lambda: y2)
fn_operator = lx.FunctionLinearOperator(T, in_structure, tags=lx.positive_semidefinite_tag)
solver = lx.CG(rtol=1e-6, atol=1e-6, max_steps=iter)
z = lx.linear_solve(fn_operator, y2, solver).value
z1 = y1 - apply_potentials_1(z)/(a)
z2 = z
return z1, z2
# %%
def EA(A, epsilon, f, g, a):
n = A.shape[0]
d = A.shape[1]
Mat1 = 2 * a[:, None] * A
vec1 = jnp.sum(x * A, axis=1)
Mat2 = -4/epsilon * x * (vec1*a)[:, None]
Py = out.geom.apply_transport_from_potentials(f,g,y.T,axis=1)
PyT = Py.T
Mat3 = 4/epsilon * PyT * vec1[:, None]
vec2 = jnp.sum(PyT * A , axis=1)
Mat4 = 4/epsilon * x * vec2[:, None]
Mat5 = jnp.zeros((n,d))
for i in range(d):
YiY = y[:,i][:,None] * y
Mat_i = out.geom.apply_transport_from_potentials(f,g,YiY.T,axis=1).T
vec_i = jnp.sum(Mat_i * A, axis=1)
Mat5 = Mat5.at[:,i].set(-4/epsilon * vec_i)
return Mat1 + Mat2 + Mat3 + Mat4 + Mat5
def HessianA(A,out):
f = out.f
g = out.g
n = len(f)
m = len(g)
epsilon = out.geom.epsilon
a = out.geom.apply_transport_from_potentials(f,g,jnp.ones(m),axis=1)
b = out.geom.apply_transport_from_potentials(f,g,jnp.ones(n),axis=0)
x = out.geom.x
y = out.geom.y
x1, x2 = RA(A,x,y,f,g,a)
z1, z2 = solve_H_x(out,x1,x2, tau2, iter)
return RTz(z1, z2)/epsilon+ EA(A, epsilon)