-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
381 lines (337 loc) · 15.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
"""
Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation
Based on the codes: https://github.com/clovaai/stargan-v2
"""
import os
import glob
import argparse
from munch import Munch
from PIL import Image
import numpy as np
from tqdm import tqdm
import torch
from torch.backends import cudnn
from torchvision import transforms
from torch.autograd import Variable
import torchvision.utils as vutils
from core.solver import Solver
from core.data_loader import (
get_train_loader,
get_test_loader,
get_eval_loader
)
from core.utils import tensor2ndarray255, save_video
def str2bool(v):
return v.lower() in ('true')
def subdirs(dname):
return [d for d in os.listdir(dname)
if os.path.isdir(os.path.join(dname, d))]
def slerp(low, high, weight):
low_norm = low/torch.norm(low, dim=1, keepdim=True)
high_norm = high/torch.norm(high, dim=1, keepdim=True)
omega = torch.acos((low_norm*high_norm).sum(1))
so = torch.sin(omega)
res = (torch.sin((1.0-weight)*omega)/so).unsqueeze(1)*low + \
(torch.sin(weight*omega)/so).unsqueeze(1) * high
return res
def interp(nets, image, s1, s2, masks, lerp_step, lerp_fun):
outputs = []
with torch.no_grad():
for alpha in np.arange(0., 1., lerp_step):
s = lerp_fun(s1, s2, alpha)
fake = nets.generator(image, s, masks=masks)
outputs.append(fake)
return outputs
def interpolations(
nets,
latent_dim,
image,
masks=None,
lerp_step=0.05,
y1=None,
y2=None,
lerp_mode='lerp'
):
if y1 is None:
y1 = torch.tensor([0]).long().cuda()
if y2 is None:
y2 = torch.tensor([1]).long().cuda()
s1 = nets.mapping_network(torch.randn(1, latent_dim).cuda(), y1)
s2 = nets.mapping_network(torch.randn(1, latent_dim).cuda(), y2)
lerp_fun = torch.lerp if lerp_mode == "lerp" else slerp
outputs = interp(nets, image, s1, s2, masks, lerp_step, lerp_fun)
outputs = torch.clamp(torch.cat(outputs, dim=3)*0.5+0.5, 0, 1)
return outputs
def interpolations_loop(
nets,
latent_dim,
image,
masks=None,
lerp_step=0.05,
y1=None,
y2=None,
lerp_mode='lerp'
):
if y1 is None:
y1 = torch.tensor([0]).long().cuda()
if y2 is None:
y2 = torch.tensor([1]).long().cuda()
s1 = nets.mapping_network(torch.randn(1, latent_dim).cuda(), y1)
s2 = nets.mapping_network(torch.randn(1, latent_dim).cuda(), y2)
s3 = nets.mapping_network(torch.randn(1, latent_dim).cuda(), y2)
s4 = nets.mapping_network(torch.randn(1, latent_dim).cuda(), y1)
outputs = []
lerp_fun = torch.lerp if lerp_mode == "lerp" else slerp
outputs += interp(nets, image, s1, s2, masks, lerp_step, lerp_fun)
outputs += interp(nets, image, s2, s3, masks, lerp_step, lerp_fun)
outputs += interp(nets, image, s3, s4, masks, lerp_step, lerp_fun)
outputs += interp(nets, image, s4, s1, masks, lerp_step, lerp_fun)
return outputs
def test_single(
nets,
image,
masks,
latent_dim,
ref_image=None,
y=0,
mode='latent'
):
z = torch.randn(1, latent_dim).cuda()
y = torch.tensor([y]).long().cuda()
if mode == 'latent':
s = nets.mapping_network(z, y)
else:
s = nets.style_encoder(ref_image, y)
fake = nets.generator(image, s, masks=masks)
return fake
def main(args):
print(args)
cudnn.benchmark = True
if args.mode == 'train':
torch.manual_seed(args.seed)
solver = Solver(args)
transform = transforms.Compose([
transforms.Resize([args.img_size, args.img_size]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])])
if args.mode == 'train':
assert len(subdirs(args.train_img_dir)) == args.num_domains
assert len(subdirs(args.val_img_dir)) == args.num_domains
if args.resume_iter > 0:
solver._load_checkpoint(args.resume_iter)
loaders = Munch(src=get_train_loader(root=args.train_img_dir,
which='source',
img_size=args.img_size,
batch_size=args.batch_size,
prob=args.randcrop_prob,
num_workers=args.num_workers),
ref=get_train_loader(root=args.train_img_dir,
which='reference',
img_size=args.img_size,
batch_size=args.batch_size,
prob=args.randcrop_prob,
num_workers=args.num_workers),
val=get_test_loader(root=args.val_img_dir,
img_size=args.img_size,
batch_size=args.val_batch_size,
shuffle=True,
num_workers=args.num_workers))
solver.train(loaders)
elif args.mode == 'eval':
solver.evaluate()
elif args.mode == 'align':
from core.wing import align_faces
align_faces(args, args.inp_dir, args.out_dir)
elif args.mode == 'inter': # interpolation
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.mkdir(save_dir)
solver._load_checkpoint(args.resume_iter)
nets_ema = solver.nets_ema
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
image_name = os.path.basename(args.input)
image = Variable(transform(Image.open(args.input).convert('RGB')).unsqueeze(0).to(device))
masks = nets_ema.fan.get_heatmap(image) if args.w_hpf > 0 else None
y1 = torch.tensor([args.y1]).long().cuda()
y2 = torch.tensor([args.y2]).long().cuda()
outputs = interpolations(
nets_ema,
args.latent_dim,
image,
masks,
lerp_step=0.1,
y1=y1,
y2=y2,
lerp_mode=args.lerp_mode
)
path = os.path.join(save_dir, image_name)
vutils.save_image(outputs.data, path, padding=0)
elif args.mode == 'test':
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.mkdir(save_dir)
solver._load_checkpoint(args.resume_iter)
nets_ema = solver.nets_ema
image_name = os.path.basename(args.input)
image = Variable(transform(Image.open(args.input).convert('RGB')).unsqueeze(0)).cuda()
masks = nets_ema.fan.get_heatmap(image) if args.w_hpf > 0 else None
image_ref = None
if args.test_mode == 'reference':
image_ref = Variable(transform(Image.open(args.input_ref).convert("RGB")).unsqueeze(0)).cuda()
fake = test_single(
nets_ema,
image,
masks,
args.latent_dim,
image_ref,
args.target_domain,
args.single_mode
)
fake = torch.clamp(fake*0.5+0.5, 0, 1)
path = os.path.join(save_dir, image_name)
vutils.save_image(fake.data, path, padding=0)
elif args.mode == 'video':
save_dir = args.save_dir
if not os.path.exists(save_dir):
os.mkdir(save_dir)
solver._load_checkpoint(args.resume_iter)
nets_ema = solver.nets_ema
image_name = os.path.basename(args.input)
image = Variable(transform(Image.open(args.input).convert('RGB')).unsqueeze(0)).cuda()
masks = nets_ema.fan.get_heatmap(image) if args.w_hpf > 0 else None
y1 = torch.tensor([args.y1]).long().cuda()
y2 = torch.tensor([args.y2]).long().cuda()
outputs = interpolations_loop(
nets_ema,
args.latent_dim,
image,
masks,
lerp_step=0.02,
y1=y1,
y2=y2,
lerp_mode=args.lerp_mode
)
outputs = torch.cat(outputs)
outputs = tensor2ndarray255(outputs)
path = os.path.join(save_dir, '{}-video.mp4'.format(image_name))
save_video(path, outputs)
else:
raise NotImplementedError
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model arguments
parser.add_argument('--img_size', type=int, default=256,
help='Image resolution')
parser.add_argument('--num_domains', type=int, default=2,
help='Number of domains')
parser.add_argument('--latent_dim', type=int, default=16,
help='Latent vector dimension')
parser.add_argument('--hidden_dim', type=int, default=512,
help='Hidden dimension of mapping network')
parser.add_argument('--style_dim', type=int, default=64,
help='Style code dimension')
# weight for objective functions
parser.add_argument('--lambda_reg', type=float, default=1,
help='Weight for R1 regularization')
parser.add_argument('--lambda_cyc', type=float, default=1,
help='Weight for cyclic consistency loss')
parser.add_argument('--lambda_sty', type=float, default=1,
help='Weight for style reconstruction loss')
parser.add_argument('--lambda_ds', type=float, default=1,
help='Weight for diversity sensitive loss')
parser.add_argument('--lambda_tri', type=float, default=1,
help='Weight for triplet loss')
parser.add_argument('--init_lambda_kl', type=float, default=0,
help='Inital weight for kl loss')
parser.add_argument('--lambda_kl', type=float, default=1,
help='Weight for kl loss')
parser.add_argument('--ds_iter', type=int, default=100000,
help='Number of iterations to optimize diversity sensitive loss')
parser.add_argument('--kl_start_iter', type=int, default=40000,
help='Number of iterations to use kl loss')
parser.add_argument('--kl_iter', type=int, default=60000,
help='Number of iterations to increate the kl loss weight')
parser.add_argument('--w_hpf', type=float, default=1,
help='weight for high-pass filtering')
parser.add_argument('--lambda_lpips', type=float, default=0,
help='weight of similarity between original image and generated image')
parser.add_argument('--triplet_margin', type=float, default=0.1)
# training arguments
parser.add_argument('--randcrop_prob', type=float, default=0.5,
help='Probabilty of using random-resized cropping')
parser.add_argument('--total_iters', type=int, default=100000,
help='Number of total iterations')
parser.add_argument('--resume_iter', type=int, default=0,
help='Iterations to resume training/testing')
parser.add_argument('--batch_size', type=int, default=8,
help='Batch size for training')
parser.add_argument('--val_batch_size', type=int, default=32,
help='Batch size for validation')
parser.add_argument('--lr', type=float, default=1e-4,
help='Learning rate for D, E and G')
parser.add_argument('--f_lr', type=float, default=1e-6,
help='Learning rate for F')
parser.add_argument('--adam_beta1', type=float, default=0.0,
help='Decay rate for 1st moment of Adam')
parser.add_argument('--adam_beta2', type=float, default=0.99,
help='Decay rate for 2nd moment of Adam')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='Weight decay for optimizer')
parser.add_argument('--num_outs_per_domain', type=int, default=10,
help='Number of generated images per domain during sampling')
# misc
parser.add_argument('--mode', type=str, required=True,
choices=['train', 'inter', 'eval', 'align', 'test', 'video'],
help='This argument is used in solver')
parser.add_argument('--num_workers', type=int, default=2,
help='Number of workers used in DataLoader')
parser.add_argument('--seed', type=int, default=777,
help='Seed for random number generator')
parser.add_argument('--dataset', type=str, default='celeba_hq', help='[celeba_hq | afhq | FacePoses]')
parser.add_argument('--lerp_mode', type=str, default='lerp', help='[lerp | slerp]')
parser.add_argument('--dist_mode', type=str, default='squared_l2', help='[l2 | squared_l2], the distance type of LPIPS')
# directory for training
parser.add_argument('--train_img_dir', type=str, default='data/celeba_hq/train',
help='Directory containing training images')
parser.add_argument('--val_img_dir', type=str, default='data/celeba_hq/val',
help='Directory containing validation images')
parser.add_argument('--sample_dir', type=str, default='expr/samples',
help='Directory for saving generated images')
parser.add_argument('--checkpoint_dir', type=str, default='expr/checkpoints',
help='Directory for saving network checkpoints')
# directory for calculating metrics
parser.add_argument('--eval_dir', type=str, default='expr/eval',
help='Directory for saving metrics, i.e., FID and LPIPS')
# directory for testing
parser.add_argument('--result_dir', type=str, default='expr/results',
help='Directory for saving generated images and videos')
parser.add_argument('--src_dir', type=str, default='assets/representative/celeba_hq/src',
help='Directory containing input source images')
parser.add_argument('--ref_dir', type=str, default='assets/representative/celeba_hq/ref',
help='Directory containing input reference images')
parser.add_argument('--inp_dir', type=str, default='assets/representative/custom/female',
help='input directory when aligning faces')
parser.add_argument('--out_dir', type=str, default='assets/representative/celeba_hq/src/female',
help='output directory when aligning faces')
parser.add_argument('--output_name', type=str)
# face alignment
parser.add_argument('--wing_path', type=str, default='expr/checkpoints/wing.ckpt')
parser.add_argument('--lm_path', type=str, default='expr/checkpoints/celeba_lm_mean.npz')
# step size
parser.add_argument('--print_every', type=int, default=40)
parser.add_argument('--sample_every', type=int, default=5000)
parser.add_argument('--save_every', type=int, default=5000)
parser.add_argument('--eval_every', type=int, default=100000)
parser.add_argument('--ppl_image_list', type=str, help='eval image list for ppl metric')
parser.add_argument('--ppl_mode', type=str, default='latent', help='[latent | reference]')
parser.add_argument('--test_mode', type=str, default='latent', help='[latent | reference]')
parser.add_argument('--input', type=str, help='input image name')
parser.add_argument('--input_ref1', type=str, help='input reference image name')
parser.add_argument('--input_ref2', type=str, help='input reference image name')
parser.add_argument('--target_domain', type=int, default=0)
parser.add_argument('--y1', type=int, default=0)
parser.add_argument('--y2', type=int, default=1)
parser.add_argument('--save_dir', type=str)
args = parser.parse_args()
main(args)