-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.sh
47 lines (41 loc) · 1.19 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/env bash
DATASET=celeba_hq
NUM_DOMAINS=2
TRAIN_TYPE=smooth_latent
DATA_DIR=/path/to/dataset_and_save
DISK_DATA=${DATA_DIR}/datasets/${DATASET}
SAMPLE_DIR=${DATA_DIR}/stargan-expr/${DATASET}_samples_${TRAIN_TYPE}
CHECKPOINTS_DIR=${DATA_DIR}/stargan-expr/${DATASET}_checkpoints_${TRAIN_TYPE}
EVAL_DIR=${DATA_DIR}/stargan-expr/${DATASET}_eval_${TRAIN_TYPE}
WING_PATH=${DATA_DIR}/pretrained_models/wing.ckpt
LM_PATH=${DATA_DIR}/pretrained_models/celeba_lm_mean.npz
GPU_ID=0
CUDA_VISIBLE_DEVICES=${GPU_ID} python3 main.py \
--num_domains ${NUM_DOMAINS} \
--mode train \
--batch_size 4 \
--w_hpf 1 \
--lambda_reg 1 \
--lambda_sty 2 \
--lambda_ds 1 \
--lambda_cyc 1 \
--lambda_tri ${LAMBDA_TRI} \
--lambda_kl 1 \
--lambda_lpips 1 \
--init_lambda_kl 0 \
--triplet_margin 0.1 \
--total_iters 100000 \
--sample_every 5000 \
--eval_every 100000 \
--save_every 10000 \
--ds_iter 100000 \
--train_img_dir ${DISK_DATA}/train \
--val_img_dir ${DISK_DATA}/val \
--sample_dir ${SAMPLE_DIR} \
--checkpoint_dir ${CHECKPOINTS_DIR} \
--eval_dir ${EVAL_DIR} \
--val_batch_size 4 \
--wing_path ${WING_PATH} \
--lm_path ${LM_PATH} \
--dataset ${DATASET} \
--resume_iter 0