-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
52 lines (41 loc) · 1.57 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse, time, os
import cv2 as cv
import mxnet as mx
import numpy as np
from gluoncv.data.transforms.presets.ssd import transform_test
from gluoncv.data.transforms.pose import detector_to_simple_pose, heatmap_to_coord
from gluoncv.utils.viz import cv_plot_image, cv_plot_keypoints
from mxnet.gluon.data.vision import transforms
from model import ctx, detector, estimator
from angle import AngeleCal
# 读取参数
parser = argparse.ArgumentParser()
parser.add_argument('--input')
parser.add_argument('--output', required=True)
args = parser.parse_args()
# 视频读取
cap = cv.VideoCapture(args.input)
ret, frame = cap.read()
features = []
while ret:
frame = mx.nd.array(cv.cvtColor(frame, cv.COLOR_BGR2RGB)).astype('uint8')
# 目标检测
x, img = transform_test(frame, short=512)
x = x.as_in_context(ctx)
class_IDs, scores, bounding_boxs = detector(x)
pose_input, upscale_bbox = detector_to_simple_pose(img, class_IDs, scores, bounding_boxs, ctx=ctx)
if len(upscale_bbox) > 0:
predicted_heatmap = estimator(pose_input)
pred_coords, confidence = heatmap_to_coord(predicted_heatmap, upscale_bbox)
img = cv_plot_keypoints(img, pred_coords, confidence, class_IDs, bounding_boxs, scores)
X = AngeleCal.cal(pred_coords, confidence)[0]
print(X)
features.append(X)
else:
# 人数不够就插入nan
print(np.nan)
features.append(np.nan)
ret, frame = cap.read()
cap.release()
# 将一个视频的特征保存到文件
np.savetxt(args.output, np.array(features), delimiter='\t', fmt='%4f')