-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
194 lines (156 loc) · 7.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import random
import numpy as np
from PIL import Image
from captcha.image import ImageCaptcha
import tensorflow as tf
CHARSETS = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789'
class CaptchaGenerator(object):
def __init__(self, image_length):
self.image_length = image_length
self.image_captcha = ImageCaptcha()
def get_random_text(self):
retVal = ''
for _ in range(self.image_length):
retVal += CHARSETS[random.randint(0, len(CHARSETS)-1)]
return retVal
def get_labeled_image(self, samples):
X, Y = [], []
for _ in range(samples):
text = self.get_random_text()
image = self.image_captcha.generate(text, format='png')
captcha_image = Image.open(image)
array = np.array(captcha_image)
X.append(array)
Y.append(text)
# self.image_captcha.write(text, "%s.png" % text)
return X, Y
class CaptchaRecog(object):
def __init__(self, captcha_length):
self.captcha_length = captcha_length
self.image_height = 60
self.image_width = 160
self.captcha_generator = CaptchaGenerator(captcha_length)
def load_dataset(self, trainset_size, testset_size):
# Both trainset and dataset will be coming from the same distribution
self.X_train, self.Y_train = \
self.captcha_generator.get_labeled_image(trainset_size)
self.X_test, self.Y_test = \
self.captcha_generator.get_labeled_image(testset_size)
# image_arr = self.grey_image(image_arr)
for i in range(trainset_size):
self.X_train[i] = self.X_train[i] / 255.
self.Y_train[i] = self.onehot_encode(self.Y_train[i])
for i in range(testset_size):
self.X_test[i] = self.X_test[i] / 255.
self.Y_test[i] = self.onehot_encode(self.Y_test[i])
print("Train set size: %d" % len(self.X_train))
print("Test set size: %d" % len(self.X_test))
def read_image(self, img_file):
label = img_file.split('.')[0]
image = Image.open(img_file)
array = np.array(image)
return label, array
def grey_image(self, img):
r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]
grey = 0.2989 * r + 0.5870 * g + 0.1140 * b
return grey
def onehot_encode(self, text):
vector = np.zeros(self.captcha_length * len(CHARSETS))
for idx, char in enumerate(text):
vector[idx * len(CHARSETS) + CHARSETS.index(char)] = 1
return vector
def onehot_decode(self, vector):
v = np.nonzero(vector)[0]
text = ''
for i in range(self.captcha_length):
text += CHARSETS[v[i] % len(CHARSETS)]
return text
def get_minibatch(self, batch_number, batch_size):
minibatch_x = np.zeros([batch_size, self.image_height, self.image_width, 3])
minibatch_y = np.zeros([batch_size, self.captcha_length * len(CHARSETS)])
for i in range(batch_size):
minibatch_x[i, :] = self.X_train[batch_number*batch_size + i]
minibatch_y[i, :] = self.Y_train[batch_number*batch_size + i]
return minibatch_x, minibatch_y
def model(self, rate=0.25):
self.X = tf.placeholder(tf.float32, [None, self.image_height, self.image_width, 3])
self.Y = tf.placeholder(tf.float32, [None, self.captcha_length * len(CHARSETS)])
W1 = tf.get_variable("W1", [3, 3, 3, 32], initializer=tf.initializers.glorot_normal())
W2 = tf.get_variable("W2", [3, 3, 32, 64], initializer=tf.initializers.glorot_normal())
W3 = tf.get_variable("W3", [3, 3, 64, 128], initializer=tf.initializers.glorot_normal())
# Conv1
Z1 = tf.nn.conv2d(self.X, W1, strides=[1, 1, 1, 1], padding='SAME')
A1 = tf.nn.relu(Z1)
P1 = tf.nn.max_pool(A1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(P1, rate=rate)
# Conv2
Z2 = tf.nn.conv2d(conv1, W2, strides=[1, 1, 1, 1], padding='SAME')
A2 = tf.nn.relu(Z2)
P2 = tf.nn.max_pool(A2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(P2, rate=rate)
# Conv3
Z3 = tf.nn.conv2d(conv2, W3, strides=[1, 1, 1, 1], padding='SAME')
A3 = tf.nn.relu(Z3)
P3 = tf.nn.max_pool(A3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(P3, rate=rate)
# FC
P = tf.layers.flatten(conv3)
Z4 = tf.contrib.layers.fully_connected(P, 1024)
Z4 = tf.contrib.layers.fully_connected(Z4, self.captcha_length * len(CHARSETS), activation_fn=None)
return Z4
def train(self, learning_rate=0.001, num_epochs=100, minibatch_size=64):
Z4 = self.model()
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Z4, labels=self.Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(init)
for epoch in range(num_epochs):
minibatch_cost = 0.
for idx in range(int(len(self.X_train) / minibatch_size)):
minibatch_x, minibatch_y = self.get_minibatch(idx, minibatch_size)
_, tmp_cost = sess.run(
[optimizer, cost], feed_dict={self.X: minibatch_x, self.Y: minibatch_y}
)
minibatch_cost += tmp_cost
# Print the cost every epoch
print("Cost after epoch %i: %f" % (epoch, minibatch_cost))
predict_text = tf.reshape(Z4, [-1, self.captcha_length, len(CHARSETS)])
predict_text = tf.argmax(predict_text, 2)
labelled_text = tf.reshape(self.Y, [-1, self.captcha_length, len(CHARSETS)])
labelled_text = tf.argmax(labelled_text, 2)
correct_prediction = tf.equal(predict_text, labelled_text)
# character level accuracy rate
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float32"))
train_accuracy = accuracy.eval({self.X: self.X_train, self.Y: self.Y_train})
test_accuracy = accuracy.eval({self.X: self.X_test, self.Y: self.Y_test})
print("Train Accuracy: %.2f" % train_accuracy)
print("Test Accuracy: %.2f" % test_accuracy)
saver.save(sess, "/tmp/my_model")
return train_accuracy, test_accuracy
def predict(self):
tf.reset_default_graph()
Z4 = self.model(rate=0)
saver = tf.train.Saver()
while (True):
filename = 'filename.png'
captcha_image = Image.open(filename)
X = np.array(captcha_image)
with tf.Session() as sess:
saver.restore(sess, "/tmp/my_model")
y_predict = tf.reshape(Z4, [-1, self.captcha_length, len(CHARSETS)])
y_predict = tf.argmax(y_predict, 2)
yhat = sess.run(y_predict, feed_dict={self.X: [X]})[0].tolist()
predict_text = np.zeros(self.captcha_length * len(CHARSETS))
for idx, ch in enumerate(yhat):
predict_text[idx * len(CHARSETS) + ch] = 1
print("%s is predicted as: %s." % (filename, self.onehot_decode(predict_text)))
break
def main():
cr = CaptchaRecog(captcha_length=4)
cr.load_dataset(trainset_size=16384, testset_size=2048)
cr.train(num_epochs=100)
cr.predict()
if __name__ == '__main__':
main()