-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_higher_order_histogram.py
149 lines (123 loc) · 4.51 KB
/
make_higher_order_histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pickle as pkl
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import argparse
from utils import get_logger, pos_direct
def parse_args():
parser = argparse.ArgumentParser(description="Draw higher order histogram.")
parser.add_argument("--emb_type", type=str, default="glove")
parser.add_argument("--topk", type=int, default=100)
return parser.parse_args()
def main():
logger = get_logger()
args = parse_args()
emb_type = args.emb_type
topk = args.topk
# seed
np.random.seed(0)
input_path = f"output/pca_ica_embeddings/pca_ica_{emb_type}.pkl"
logger.info(f"loading embeddings from {input_path}")
with open(input_path, "rb") as f:
_, ica_embed, _ = pkl.load(f)
ica_embed = pos_direct(ica_embed)
n, dim = ica_embed.shape
logger.info(f"ica_embed.shape: {ica_embed.shape}")
# axis tour
axis_tour_path = f"LKH-3.0.6-{emb_type}/axistour.top{topk}.txt"
logger.info(f"loading axis tour from {axis_tour_path}")
axistour = []
with open(axis_tour_path) as f:
lines = f.readlines()
for line in lines:
line = line.strip()
idx = int(line[len("axis") :])
axistour.append(idx)
axistour_embed = ica_embed[:, axistour]
# random
random_idx = np.random.permutation(dim)
random_embed = ica_embed[:, random_idx]
random_sign = np.random.choice([-1, 1], size=dim)
random_embed = random_embed * random_sign.reshape(1, -1)
# TICA9
tica_embed_path = f"output/tica_embeddings/tica_width9_{emb_type}.pkl"
if not Path(tica_embed_path).exists():
raise FileNotFoundError(f"{tica_embed_path} does not exist")
with open(tica_embed_path, "rb") as f:
tica9_embed, _ = pkl.load(f)
tica9_embed = pos_direct(tica9_embed)
# TICA75
tica_embed_path = f"output/tica_embeddings/tica_width75_{emb_type}.pkl"
if not Path(tica_embed_path).exists():
raise FileNotFoundError(f"{tica_embed_path} does not exist")
with open(tica_embed_path, "rb") as f:
tica75_embed, _ = pkl.load(f)
tica75_embed = pos_direct(tica75_embed)
logger.info("computing higher order correlation")
ho_corrs_list = []
for emb_name, embed in zip(
["Random Order", "Axis Tour", "TICA9", "TICA75"],
[random_embed, axistour_embed, tica9_embed, tica75_embed],
):
ho_corrs = []
for i in range(dim):
energy_corr = np.mean(embed[:, i] ** 2 * embed[:, (i + 1) % dim] ** 2)
ho_corrs.append(energy_corr)
ho_corrs_list.append((ho_corrs, emb_name))
argsort = np.argsort([np.mean(ho_corrs) for ho_corrs, _ in ho_corrs_list])
ranks = np.argsort(argsort)
# draw higher order histogram
logger.info("drawing higher order correlation histogram")
fig, ax = plt.subplots(figsize=(10, 6))
xmin = min([np.min(ho_corrs) for ho_corrs, _ in ho_corrs_list])
xmax = max([np.max(ho_corrs) for ho_corrs, _ in ho_corrs_list])
bins = np.linspace(0.99 * xmin, 1.01 * xmax, 50)
emb_name2color = {
"Random Order": "orange",
"Axis Tour": "red",
"TICA9": "lime",
"TICA75": "gray",
}
for idx, (ho_corrs, emb_name) in enumerate(ho_corrs_list):
r = ranks[idx]
ax.hist(
ho_corrs,
bins=bins,
label=emb_name,
alpha=0.5,
color=emb_name2color[emb_name],
density=True,
)
mean = np.mean(ho_corrs)
ax.axvline(
mean, color=emb_name2color[emb_name], linestyle="dashed", linewidth=2
)
dx = 0.2 * (-1) ** (r < 2) * (abs(r - 1.5) + 1.0 + 1.0 * int(0 < r < 3))
y = 2 + 2 * int(0 < r < 3)
ax.text(
mean + dx,
y,
f"${mean:.3f}$",
color=emb_name2color[emb_name],
fontsize=25,
ha="center",
)
# label fontsize
fs = 25
ax.set_xlabel("Higher-Order Correlation", fontsize=fs)
ax.set_ylabel("Density", fontsize=fs)
ax.yaxis.set_major_locator(plt.MaxNLocator(integer=True))
ax.legend(loc="upper right", fontsize=fs)
# tick fontsize
ts = 25
ax.tick_params(labelsize=ts)
# adjust margin
plt.subplots_adjust(left=0.08, right=0.99, bottom=0.15, top=0.98)
# save fig
output_dir = Path("output/images/tica")
output_dir.mkdir(parents=True, exist_ok=True)
output_path = output_dir / f"tica_ho_histogram_{emb_type}_top{topk}.pdf"
fig.savefig(output_path)
plt.close()
if __name__ == "__main__":
main()