Skip to content

Latest commit

 

History

History
43 lines (35 loc) · 1.48 KB

run.md

File metadata and controls

43 lines (35 loc) · 1.48 KB

Train and Test

Train AdaptiveOcc with 4 RTX3090 GPUs

./tools/dist_train.sh ./projects/configs/adaptiveocc/adaptiveocc.py 4  ./work_dirs/adaptiveocc

Train AdaptiveOcc with 1 RTX3090 GPUs

python ./tools/train.py ./projects/configs/adaptiveocc/adaptiveocc.py --work-dir ./work_dirs/output --deterministic --no-validate

Eval AdaptiveOcc with 4 RTX3090 GPUs

./tools/dist_test.sh ./projects/configs/adaptiveocc/adaptiveocc_inference.py ./path/to/ckpts.pth 4

Eval AdaptiveOcc with 1 RTX3090 GPUs

python ./tools/test.py ./projects/configs/adaptiveocc/adaptiveocc_inference.py ./path/to/ckpts.pth --deterministic --eval bbox

Visualize occupancy predictions, occupancy groundtruth and the multi-scale occupancy groundtruth:

First, you need to generate prediction results. Here we use whole validation set as an example.

./tools/dist_test.sh ./projects/configs/adaptiveocc/adaptiveocc_inference_vis.py ./path/to/ckpts.pth 4
# python ./tools/test.py ./projects/configs/adaptiveocc/adaptiveocc_inference_vis.py ./path/to/ckpts.pth --deterministic --eval bbox

You will get prediction results in './visual_dir'. You can directly use meshlab to visualize .ply files or run visual_octree.py to visualize raw .npy files with mayavi:

python ./tools/visual_octree.py visual_dir/$npy_path$

Visualize multi-scale occupancy groundtruth:

python ./tools/visual_octree.py visual_dir/$npy_path$ --is_gt

Visualize occupancy groundtruth:

python ./tools/visual.py $npy_path$