-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbenchmark.py
723 lines (640 loc) · 25.5 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
import os
import sys
import time
import argparse
import json
import random
import logging
import pathlib
import re
import functools
import torch
import torch.nn as nn
import torchvision
import torchvision.models as models
import numpy as np
from pdb import set_trace as st
import copy
from dataset.mit67 import MIT67
from dataset.stanford_dog import SDog120
from dataset.flower102 import Flower102
from dataset.caltech256 import Caltech257Data
from dataset.stanford_40 import Stanford40Data
from dataset.cub200 import CUB200Data
from model.fe_resnet import resnet18_dropout, resnet34_dropout, resnet50_dropout, resnet101_dropout
from model.fe_mobilenet import mbnetv2_dropout
from model.fe_resnet import feresnet18, feresnet34, feresnet50, feresnet101
from model.fe_mobilenet import fembnetv2
from model.fe_vgg16 import *
from finetuner import Finetuner
from weight_pruner import WeightPruner
SEED = 98
INPUT_SHAPE = (3, 224, 224)
BATCH_SIZE = 64
TRAIN_ITERS = 100000
DEFAULT_ITERS = 10000
TRANSFER_ITERS = DEFAULT_ITERS
QUANTIZE_ITERS = DEFAULT_ITERS # may be useless
PRUNE_ITERS = DEFAULT_ITERS
DISTILL_ITERS = DEFAULT_ITERS
STEAL_ITERS = DEFAULT_ITERS
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
CONTINUE_TRAIN = False # whether to continue previous training
def lazy_property(func):
attribute = '_lazy_' + func.__name__
@property
@functools.wraps(func)
def wrapper(self):
if not hasattr(self, attribute):
setattr(self, attribute, func(self))
return getattr(self, attribute)
return wrapper
def base_args():
args = argparse.Namespace()
args.const_lr = False
args.batch_size = BATCH_SIZE
args.lr = 5e-3
args.print_freq = 100
args.label_smoothing = 0
args.vgg_output_distill = False
args.reinit = False
args.l2sp_lmda = 0
args.train_all = False
args.ft_begin_module = None
args.momentum = 0
args.weight_decay = 1e-4
args.beta = 1e-2
args.feat_lmda = 0
args.test_interval = 1000
args.adv_test_interval = -1
args.feat_layers = '1234'
args.no_save = False
args.steal = False
return args
class ModelWrapper:
def __init__(self, benchmark, teacher_wrapper, trans_str,
arch_id=None, dataset_id=None, iters=100, fc=True):
self.logger = logging.getLogger('ModelWrapper')
self.benchmark = benchmark
self.teacher_wrapper = teacher_wrapper
self.trans_str = trans_str
self.arch_id = arch_id if arch_id else teacher_wrapper.arch_id
self.dataset_id = dataset_id if dataset_id else teacher_wrapper.dataset_id
self.torch_model_path = os.path.join(benchmark.models_dir, f'{self.__str__()}')
self.iters = iters
self.fc = fc
assert self.arch_id is not None
assert self.dataset_id is not None
def __str__(self):
teacher_str = '' if self.teacher_wrapper is None else self.teacher_wrapper.__str__()
return f'{teacher_str}{self.trans_str}-'
def name(self):
return self.__str__()
def torch_model_exists(self):
ckpt_path = os.path.join(self.torch_model_path, 'final_ckpt.pth')
return os.path.exists(ckpt_path)
def save_torch_model(self, torch_model):
if not os.path.exists(self.torch_model_path):
os.makedirs(self.torch_model_path)
ckpt_path = os.path.join(self.torch_model_path, 'final_ckpt.pth')
torch.save(
{'state_dict': torch_model.state_dict()},
ckpt_path,
)
@lazy_property
def torch_model(self):
"""
load the model object from torch_model_path
:return: torch.nn.Module object
"""
if self.dataset_id == 'ImageNet':
num_classes = 1000
else:
num_classes = self.benchmark.get_dataloader(self.dataset_id).dataset.num_classes
if self.fc:
torch_model = eval(f'{self.arch_id}_dropout')(
pretrained=False,
num_classes=num_classes
)
else:
torch_model = eval(f'fe{self.arch_id}')(
pretrained=False,
num_classes=num_classes
)
m = re.match(r'(\S+)\((\S*)\)', self.trans_str)
method = m.group(1)
params = m.group(2).split(',')
if method == 'quantize':
dtype = params[0]
dtype = torch.qint8 if dtype == 'qint8' else torch.float16
torch_model = torch.quantization.quantize_dynamic(torch_model, dtype=dtype)
ckpt = torch.load(os.path.join(self.torch_model_path, 'final_ckpt.pth'))
torch_model.load_state_dict(ckpt['state_dict'])
return torch_model
@lazy_property
def torch_model_on_device(self):
m = re.match(r'(\S+)\((\S*)\)', self.trans_str)
method = m.group(1)
if method == "quantize":
return self.torch_model.to("cpu")
else:
return self.torch_model.to(DEVICE)
def load_saved_weights(self, torch_model):
"""
load weights in the latest checkpoint to torch_model
"""
ckpt_path = os.path.join(self.torch_model_path, 'ckpt.pth')
if os.path.exists(ckpt_path):
ckpt = torch.load(ckpt_path)
torch_model.load_state_dict(ckpt['state_dict'])
self.logger.info('load_saved_weights: loaded a previous checkpoint')
else:
self.logger.info('load_saved_weights: no previous checkpoint found')
return torch_model
@lazy_property
def input_shape(self):
return INPUT_SHAPE
def get_seed_inputs(self, n, rand=False):
if rand:
batch_input_size = (n, *INPUT_SHAPE)
images = np.random.normal(size=batch_input_size).astype(np.float32)
else:
dataset_id = 'MIT67' if self.dataset_id == 'ImageNet' else self.dataset_id
train_loader = self.benchmark.get_dataloader(
dataset_id, split='train', batch_size=n, shuffle=True)
images, labels = next(iter(train_loader))
images = images.to('cpu').numpy()
return images
def batch_forward(self, inputs):
if isinstance(inputs, np.ndarray):
inputs = torch.from_numpy(inputs)
m = re.match(r'(\S+)\((\S*)\)', self.trans_str)
method = m.group(1)
if method == "quantize":
inputs = inputs.to("cpu")
else:
inputs = inputs.to(DEVICE)
self.torch_model_on_device.eval()
with torch.no_grad():
return self.torch_model_on_device(inputs)
def list_tensors(self):
pass
def batch_forward_with_ir(self, inputs):
if isinstance(inputs, np.ndarray):
inputs = torch.from_numpy(inputs)
idx = 0
hook_handles = []
module_ir = {}
model = self.torch_model
def register_hooks(module):
def hook(module, input, output):
global idx
class_name = str(module.__class__).split(".")[-1].split("'")[0]
module_name = f"{class_name}/{idx:03d}"
idx += 1
module_ir[module_name] = output.numpy()
if len(list(module.children())) == 0:
handle = module.register_forward_hook(hook)
hook_handles.append(handle)
def remove_hooks():
for h in hook_handles:
h.remove()
model.eval()
with torch.no_grad():
model.apply(register_hooks)
outputs = model(inputs)
remove_hooks()
return module_ir
def gen_model(self, regenerate=False):
"""
generate the torch model
:return:
"""
trans_str = self.trans_str
if not regenerate and self.torch_model_exists():
self.logger.info(f'model already exists: {self.__str__()}')
return
self.logger.info(f'generating model for: {self.__str__()}')
m = re.match(r'(\S+)\((\S*)\)', trans_str)
method = m.group(1)
params = m.group(2).split(',')
if regenerate and os.path.exists(self.torch_model_path):
import shutil
shutil.rmtree(self.torch_model_path)
if not os.path.exists(self.torch_model_path):
os.makedirs(self.torch_model_path)
teacher_model = None
if self.teacher_wrapper:
self.teacher_wrapper.gen_model()
teacher_model = self.teacher_wrapper.torch_model
train_loader = self.benchmark.get_dataloader(self.dataset_id, split='train')
test_loader = self.benchmark.get_dataloader(self.dataset_id, split='test')
args = base_args()
args.iterations = self.iters
args.output_dir = self.torch_model_path
if method == 'pretrain':
# load pretrained model as specified by arch_id and save it to model path
arch_id = params[0]
dataset_id = params[1]
if dataset_id != 'ImageNet':
self.logger.warning(f'gen_model: pretrained model on {dataset_id} not supported')
torch_model = eval(f'{arch_id}_dropout')(
pretrained=True,
num_classes=1000
)
self.save_torch_model(torch_model)
elif method == 'train':
# train the model from scratch
arch_id = params[0]
dataset_id = params[1]
torch_model = eval(f'{arch_id}_dropout')(
pretrained=False,
num_classes=train_loader.dataset.num_classes
)
args.network = self.arch_id
args.ft_ratio = 1
args.reinit = True
args.lr = 1e-2
args.weight_decay = 5e-3
args.momentum = 0.9
if CONTINUE_TRAIN:
torch_model = self.load_saved_weights(torch_model) # continue training
finetuner = Finetuner(
args,
torch_model, torch_model,
train_loader, test_loader,
)
finetuner.train()
self.save_torch_model(torch_model)
elif method == 'transfer':
# transfer the teacher to a dataset as specified by dataset_id, fine-tune the last tune_ratio% layers
dataset_id = params[0]
tune_ratio = float(params[1])
student_model = eval(f'{self.arch_id}_dropout')(
pretrained=True,
num_classes=train_loader.dataset.num_classes
)
# FIXME copy state_dict from teacher to student, ignore the final layer
# student_model.load_state_dict(teacher_model.state_dict(), strict=False)
args.network = self.arch_id
args.ft_ratio = tune_ratio
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = Finetuner(
args,
student_model, teacher_model,
train_loader, test_loader,
)
finetuner.train()
self.save_torch_model(student_model)
elif method == 'quantize':
dtype = params[0]
dtype = torch.qint8 if dtype == 'qint8' else torch.float16
student_model = torch.quantization.quantize_dynamic(teacher_model, dtype=dtype)
self.save_torch_model(student_model)
elif method == 'prune':
prune_ratio = float(params[0])
student_model = copy.deepcopy(teacher_model)
args.network = self.arch_id
args.method = "weight"
args.weight_ratio = prune_ratio
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = WeightPruner(
args,
student_model, teacher_model,
train_loader, test_loader,
)
finetuner.train()
self.save_torch_model(student_model)
finetuner.final_check_param_num()
elif method == 'distill':
student_model = eval(f'{self.arch_id}_dropout')(
pretrained=False,
num_classes=train_loader.dataset.num_classes
)
args.network = self.arch_id
args.feat_lmda = 5e0
args.reinit = True
args.lr = 1e-2
args.weight_decay = 5e-3
args.momentum = 0.9
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = Finetuner(
args,
student_model, teacher_model,
train_loader, test_loader,
)
finetuner.train()
self.save_torch_model(student_model)
elif method == 'steal':
arch_id = params[0]
# use output distillation to transfer teacher knowledge to another architecture
student_model = eval(f'{arch_id}_dropout')(
pretrained=False,
num_classes=train_loader.dataset.num_classes
)
args.network = arch_id
args.steal = True
args.reinit = True
args.steal_alpha = 1
args.temperature = 1
args.lr = 1e-2
args.weight_decay = 5e-3
args.momentum = 0.9
if CONTINUE_TRAIN:
student_model = self.load_saved_weights(student_model) # continue training
finetuner = Finetuner(
args,
student_model, teacher_model,
train_loader, test_loader,
)
finetuner.train()
self.save_torch_model(student_model)
else:
raise RuntimeError(f'unknown transformation: {method}')
def transfer(self, dataset_id, tune_ratio=0.1, iters=TRANSFER_ITERS):
trans_str = f'transfer({dataset_id},{tune_ratio})'
# model_wrapper is the wrapper of the student model
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
dataset_id=dataset_id,
iters=iters
)
return model_wrapper
def quantize(self, dtype='qint8'):
"""
do post-training quantization on the model
:param dtype: qint8 or float16
:return:
"""
trans_str = f'quantize({dtype})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str
)
return model_wrapper
def prune(self, prune_ratio=0.1, iters=PRUNE_ITERS):
trans_str = f'prune({prune_ratio})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
iters=iters
)
return model_wrapper
def distill(self, iters=DISTILL_ITERS):
trans_str = f'distill()'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
iters=iters
)
return model_wrapper
def steal(self, arch_id, iters=STEAL_ITERS):
trans_str = f'steal({arch_id})'
model_wrapper = ModelWrapper(
benchmark=self.benchmark,
teacher_wrapper=self,
trans_str=trans_str,
arch_id=arch_id,
iters=iters
)
return model_wrapper
@lazy_property
def accuracy(self):
"""
evaluate the model accuracy on the dataset
:return: a float number
"""
# TODO implement this
model = self.torch_model.to(DEVICE)
test_loader = self.benchmark.get_dataloader(self.dataset_id, split='test')
with torch.no_grad():
model.eval()
total = 0
top1 = 0
for i, (batch, label) in enumerate(test_loader):
batch, label = batch.to(DEVICE), label.to(DEVICE)
total += batch.size(0)
out = model(batch)
_, pred = out.max(dim=1)
top1 += int(pred.eq(label).sum().item())
# print(top1, total)
return float(top1) / total * 100
class ImageBenchmark:
def __init__(self, datasets_dir='data', models_dir='models'):
self.logger = logging.getLogger('ImageBench')
self.datasets_dir = datasets_dir
self.models_dir = models_dir
"""
Available datasets are MIT67, Flower102, SDog120
Available models are mbnetv2, resnet18, resnet34, resnet50, vgg11_bn, vgg16_bn
"""
# Used in the paper
self.datasets = ['Flower102', 'SDog120']
self.archs = ['mbnetv2', 'resnet18']
# Other archs
# self.datasets = ['MIT67', 'Flower102', 'SDog120']
# self.archs = ['mbnetv2', 'resnet18', 'vgg16_bn', 'vgg11_bn', 'resnet34', 'resnet50']
# For debug
# self.datasets = ['Flower102']
# self.archs = ['resnet18']
def get_dataloader(self, dataset_id, split='train', batch_size=BATCH_SIZE, shuffle=True, seed=SEED, shot=-1):
"""
Get the torch Dataset object
:param dataset_id: the name of the dataset, should also be the dir name and the class name
:param split: train or test
:param batch_size: batch size
:param shot: number of training samples per class for the training dataset. -1 indicates using the full dataset
:return: torch.utils.data.DataLoader instance
"""
try:
datapath = os.path.join(self.datasets_dir, dataset_id)
normalize = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
from torchvision import transforms
if split == 'train':
dataset = eval(dataset_id)(
datapath, True, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]),
shot, seed, preload=False
)
else:
dataset = eval(dataset_id)(
datapath, False, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]),
shot, seed, preload=False
)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size, shuffle=shuffle,
num_workers=8, pin_memory=False
)
return data_loader
except Exception as e:
self.logger.warning(f'get_dataloader failed: {e}')
return None
def load_pretrained(self, arch_id, fc=True):
"""
Get the model pretrained on imagenet
:param arch_id: the name of the arch
:return: a ModelWrapper instance
"""
model_wrapper = ModelWrapper(
benchmark=self,
teacher_wrapper=None,
trans_str=f'pretrain({arch_id},ImageNet)',
arch_id=arch_id,
dataset_id='ImageNet',
fc=fc,
)
return model_wrapper
def load_trained(self, arch_id, dataset_id, iters=TRAIN_ITERS, fc=True):
"""
Get the model with architecture arch_id trained on dataset dataset_id
:param arch_id: the name of the arch
:param dataset_id: the name of the dataset
:param iters: number of iterations
:return: a ModelWrapper instance
"""
model_wrapper = ModelWrapper(
benchmark=self,
teacher_wrapper=None,
trans_str=f'train({arch_id},{dataset_id})',
arch_id=arch_id,
dataset_id=dataset_id,
iters=iters,
fc=fc,
)
return model_wrapper
def list_models(self, fc=True):
"""
list the models in the benchmark dataset
:return: a stream of ModelWrapper instances
"""
source_models = []
quantization_dtypes = ['qint8', 'float16']
prune_ratios = [0.2, 0.5, 0.8]
transfer_tune_ratios = [0.1, 0.5, 1]
# load pretrained source models
for arch in self.archs:
source_model = self.load_pretrained(arch, fc=fc)
source_models.append(source_model)
yield source_model
# retrain models
retrain_models = []
for arch_id in self.archs:
for dataset_id in self.datasets:
retrain_model = self.load_trained(arch_id, dataset_id, TRAIN_ITERS, fc=fc)
retrain_models.append(retrain_model)
yield retrain_model
# for debug
# prune_ratios = [0.2]
# transfer_tune_ratios = [0.5, 1]
transfer_models = []
# - M_{i,x}/{trans-y,l} -- Transfer M_{i,x} to D_y by fine-tuning from l-st layer
for source_model in source_models:
for dataset_id in self.datasets:
if dataset_id == source_model.dataset_id:
continue
for tune_ratio in transfer_tune_ratios:
transfer_model = source_model.transfer(dataset_id=dataset_id, tune_ratio=tune_ratio)
transfer_models.append(transfer_model)
yield transfer_model
# - M_{i,x}/{quant-qint8/float16} -- Compress M_{i,x} with integer / float16 quantization
for transfer_model in transfer_models:
for quantization_dtype in quantization_dtypes:
yield transfer_model.quantize(dtype=quantization_dtype)
# - M_{i,x}/{prune-p} -- Prune M_{i,x} with pruning ratio = p
for transfer_model in transfer_models:
for pr in prune_ratios:
yield transfer_model.prune(prune_ratio=pr)
# - M_{i,x}/{distill} -- Distill M_{i,x}
for transfer_model in transfer_models:
yield transfer_model.distill()
# - M_{i,x}/{steal-j} -- Steal M_{i,x} to A_j
for transfer_model in transfer_models:
for arch_id in self.archs:
yield transfer_model.steal(arch_id=arch_id)
# variations of retrained models
# - M_{i,x}/{prune-p} -- Prune M_{i,x} with pruning ratio = p
for retrain_model in retrain_models:
for pr in prune_ratios:
yield retrain_model.prune(prune_ratio=pr)
# - M_{i,x}/{distill} -- Distill M_{i,x}
for retrain_model in retrain_models:
yield retrain_model.distill()
# - M_{i,x}/{steal-j} -- Steal M_{i,x} to A_j
for retrain_model in retrain_models:
for arch_id in self.archs:
yield retrain_model.steal(arch_id=arch_id)
def parse_args():
"""
Parse command line input
:return:
"""
parser = argparse.ArgumentParser(description="Build micro benchmark.")
parser.add_argument("-datasets_dir", action="store", dest="datasets_dir", default='data',
help="Path to the dir of datasets.")
parser.add_argument("-models_dir", action="store", dest="models_dir", default='models',
help="Path to the dir of benchmark models.")
parser.add_argument("-mask", action="store", dest="mask", default="",
help="The mask to filter the models to generate, split with +")
parser.add_argument("-phase", action="store", dest="phase", type=str, default="",
help="The phase to run. Use a prefix to filter the phases.")
parser.add_argument("-regenerate", action="store_true", dest="regenerate", default=False,
help="Whether to regenerate the models.")
args, unknown = parser.parse_known_args()
return args
def check_param_num(model, name):
total = sum([module.weight.nelement() for module in model.modules() if isinstance(module, nn.Conv2d) ])
num = total
for m in model.modules():
if ( isinstance(m, nn.Conv2d) ):
num -= int((m.weight.data == 0).sum())
ratio = (total - num) / total
log = f"===>{name}: Total {total}, current {num}, prune ratio {ratio:2f}"
print(log)
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format="%(asctime)s %(name)-12s %(levelname)-8s %(message)s")
seed = 98
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
args = parse_args()
bench = ImageBenchmark(datasets_dir=args.datasets_dir, models_dir=args.models_dir)
models_to_gen = []
mask_substrs = args.mask.strip().split('+')
for model_wrapper in bench.list_models():
# print(f'loaded model: {model_wrapper}')
model_str_tokens = model_wrapper.__str__().split('-')
if len(model_str_tokens) >= 2 and model_str_tokens[-2].startswith(args.phase):
to_gen = True
model_str = re.sub(r'[^A-Za-z0-9.]+', '_', model_wrapper.__str__())
for mask_substr in mask_substrs:
if not mask_substr:
continue
if mask_substr not in f'_{model_str}_':
to_gen = False
break
if to_gen:
models_to_gen.append(model_wrapper)
models_to_gen_str = "\n".join([model_wrapper.__str__() for model_wrapper in models_to_gen])
print(f'{len(models_to_gen)} models to generate: \n{models_to_gen_str}')
for model_wrapper in models_to_gen:
model_wrapper.gen_model(regenerate=args.regenerate)