-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfinetuner.py
528 lines (441 loc) · 19.4 KB
/
finetuner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import os
import os.path as osp
import sys
import time
import argparse
from pdb import set_trace as st
import json
import random
from functools import partial
import torch
import numpy as np
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
from dataset.cub200 import CUB200Data
from dataset.mit67 import MIT67
from dataset.stanford_dog import SDog120
from dataset.caltech256 import Caltech257Data
from dataset.stanford_40 import Stanford40Data
from dataset.flower102 import Flower102
from model.fe_resnet import resnet18_dropout, resnet50_dropout, resnet101_dropout
from model.fe_mobilenet import mbnetv2_dropout
from model.fe_resnet import feresnet18, feresnet50, feresnet101
from model.fe_mobilenet import fembnetv2
from model.fe_vgg16 import *
from utils import *
class Finetuner(object):
def __init__(
self,
args,
model,
teacher,
train_loader,
test_loader,
):
self.args = args
self.model = model.to('cuda')
self.teacher = teacher.to('cuda')
self.train_loader = train_loader
self.test_loader = test_loader
self.init_models()
def init_models(self):
args = self.args
model = self.model
teacher = self.teacher
# Used to matching features
def record_act(self, input, output):
self.out = output
if 'mbnetv2' in args.network:
reg_layers = {0: [model.layer1], 1: [model.layer2], 2: [model.layer3], 3: [model.layer4]}
model.layer1.register_forward_hook(record_act)
model.layer2.register_forward_hook(record_act)
model.layer3.register_forward_hook(record_act)
model.layer4.register_forward_hook(record_act)
if '5' in args.feat_layers:
reg_layers[4] = [model.layer5]
model.layer5.register_forward_hook(record_act)
elif 'resnet' in args.network:
reg_layers = {0: [model.layer1], 1: [model.layer2], 2: [model.layer3], 3: [model.layer4]}
model.layer1.register_forward_hook(record_act)
model.layer2.register_forward_hook(record_act)
model.layer3.register_forward_hook(record_act)
model.layer4.register_forward_hook(record_act)
elif 'vgg' in args.network:
cnt = 0
reg_layers = {}
for name, module in model.named_modules():
if isinstance(module, nn.MaxPool2d) :
reg_layers[name] = [module]
module.register_forward_hook(record_act)
print(name, module)
# Stored pre-trained weights for computing L2SP
for m in model.modules():
if hasattr(m, 'weight') and not hasattr(m, 'old_weight'):
m.old_weight = m.weight.data.clone().detach()
# all_weights = torch.cat([all_weights.reshape(-1), m.weight.data.abs().reshape(-1)], dim=0)
if hasattr(m, 'bias') and not hasattr(m, 'old_bias') and m.bias is not None:
m.old_bias = m.bias.data.clone().detach()
if args.reinit:
for m in model.modules():
if type(m) in [nn.Linear, nn.BatchNorm2d, nn.Conv2d]:
m.reset_parameters()
if 'vgg' not in args.network:
reg_layers[0].append(teacher.layer1)
teacher.layer1.register_forward_hook(record_act)
reg_layers[1].append(teacher.layer2)
teacher.layer2.register_forward_hook(record_act)
reg_layers[2].append(teacher.layer3)
teacher.layer3.register_forward_hook(record_act)
reg_layers[3].append(teacher.layer4)
teacher.layer4.register_forward_hook(record_act)
if '5' in args.feat_layers:
reg_layers[4].append(teacher.layer5)
teacher.layer5.register_forward_hook(record_act)
else:
cnt = 0
for name, module in teacher.named_modules():
if isinstance(module, nn.MaxPool2d) :
reg_layers[name].append(module)
module.register_forward_hook(record_act)
# print(name, module)
self.reg_layers = reg_layers
# Check self.model
# st()
def compute_steal_loss(self, batch, label):
def CXE(predicted, target):
return -(target * torch.log(predicted)).sum(dim=1).mean()
model = self.model
teacher = self.teacher
alpha = self.args.steal_alpha
T = self.args.temperature
teacher_out = teacher(batch)
out = model(batch)
_, pred = out.max(dim=1)
# _, teacher_pred = teacher_out.max(dim=1)
# KD_loss = F.cross_entropy(out, teacher_pred)
# soft_loss, hard_loss = 0, 0
out = F.softmax(out)
teacher_out = F.softmax(teacher_out)
KD_loss = CXE(out, teacher_out)
soft_loss, hard_loss = 0, 0
# soft_loss = nn.KLDivLoss()(
# F.log_softmax(out/T, dim=1),
# F.softmax(teacher_out/T, dim=1)
# ) * (alpha * T * T)
# hard_loss = F.cross_entropy(out, label) * (1. - alpha)
# KD_loss = soft_loss + hard_loss
top1 = float(pred.eq(label).sum().item()) / label.shape[0] * 100.
return KD_loss, top1, soft_loss, hard_loss
def compute_loss(self, batch, label, ce, featloss):
model = self.model
teacher = self.teacher
args = self.args
l2sp_lmda = self.args.l2sp_lmda
reg_layers = self.reg_layers
feat_loss, l2sp_loss = 0, 0
out = model(batch)
_, pred = out.max(dim=1)
top1 = float(pred.eq(label).sum().item()) / label.shape[0] * 100.
# top1_meter.update(float(pred.eq(label).sum().item()) / label.shape[0] * 100.)
loss = 0.
loss += ce(out, label)
ce_loss = loss.item()
# ce_loss_meter.update(loss.item())
with torch.no_grad():
tout = teacher(batch)
# Compute the feature distillation loss only when needed
if args.feat_lmda != 0:
regloss = 0
for key in reg_layers.keys():
# key = int(layer)-1
src_x = reg_layers[key][0].out
tgt_x = reg_layers[key][1].out
regloss += featloss(src_x, tgt_x.detach())
regloss = args.feat_lmda * regloss
loss += regloss
feat_loss = regloss.item()
# feat_loss_meter.update(regloss.item())
beta_loss, linear_norm = linear_l2(model, args.beta)
loss = loss + beta_loss
linear_loss = beta_loss.item()
# linear_loss_meter.update(beta_loss.item())
if l2sp_lmda != 0:
reg, _ = l2sp(model, l2sp_lmda)
l2sp_loss = reg.item()
# l2sp_loss_meter.update(reg.item())
loss = loss + reg
total_loss = loss.item()
# total_loss_meter.update(loss.item())
return loss, top1, ce_loss, feat_loss, linear_loss, l2sp_loss, total_loss
def steal_test(self):
model = self.model
teacher = self.teacher
loader = self.test_loader
alpha = self.args.steal_alpha
T = self.args.temperature
with torch.no_grad():
model.eval()
teacher.eval()
total_soft, total_hard, total_kd = 0, 0, 0
total = 0
top1 = 0
for i, (batch, label) in enumerate(loader):
batch, label = batch.to('cuda'), label.to('cuda')
total += batch.size(0)
teacher_out = teacher(batch)
out = model(batch)
_, pred = out.max(dim=1)
soft_loss = nn.KLDivLoss()(
F.log_softmax(out/T, dim=1),
F.softmax(teacher_out/T, dim=1)
) * (alpha * T * T)
hard_loss = F.cross_entropy(out, label) * (1. - alpha)
KD_loss = soft_loss + hard_loss
total_soft += soft_loss.item()
total_hard += hard_loss.item()
total_kd += KD_loss.item()
top1 += int(pred.eq(label).sum().item())
return float(top1)/total*100, total_kd/(i+1), total_soft/(i+1), total_hard/(i+1)
def test(self):
model = self.model
teacher = self.teacher
loader = self.test_loader
reg_layers = self.reg_layers
args = self.args
loss = True
with torch.no_grad():
model.eval()
if loss:
teacher.eval()
ce = CrossEntropyLabelSmooth(loader.dataset.num_classes, args.label_smoothing).to('cuda')
featloss = torch.nn.MSELoss(reduction='none')
total_ce = 0
total_feat_reg = np.zeros(len(reg_layers))
total_l2sp_reg = 0
total = 0
top1 = 0
for i, (batch, label) in enumerate(loader):
batch, label = batch.to('cuda'), label.to('cuda')
total += batch.size(0)
out = model(batch)
_, pred = out.max(dim=1)
top1 += int(pred.eq(label).sum().item())
if loss:
total_ce += ce(out, label).item()
if teacher is not None:
with torch.no_grad():
tout = teacher(batch)
for i, key in enumerate(reg_layers):
# print(key, len(reg_layers[key]))
src_x = reg_layers[key][0].out
tgt_x = reg_layers[key][1].out
# print(src_x.shape, tgt_x.shape)
regloss = featloss(src_x, tgt_x.detach()).mean()
total_feat_reg[i] += regloss.item()
_, unweighted = l2sp(model, 0)
total_l2sp_reg += unweighted.item()
# break
return float(top1)/total*100, total_ce/(i+1), np.sum(total_feat_reg)/(i+1), total_l2sp_reg/(i+1), total_feat_reg/(i+1)
def get_fine_tuning_parameters(self):
model = self.model
parameters = []
ft_begin_module = self.args.ft_begin_module
ft_ratio = self.args.ft_ratio if 'ft_ratio' in self.args else None
if ft_ratio:
all_params = [param for param in model.parameters()]
num_tune_params = int(len(all_params) * ft_ratio)
for v in all_params[-num_tune_params:]:
parameters.append({'params': v})
all_names = [name for name, _ in model.named_parameters()]
with open(osp.join(self.args.output_dir, "finetune.log"), "w") as f:
f.write(f"Fixed layers:\n")
for name in all_names[:-num_tune_params]:
f.write(name+"\n")
f.write(f"\n\nFinetuned layers:\n")
for name in all_names[-num_tune_params:]:
f.write(name+"\n")
return parameters
if not ft_begin_module:
return model.parameters()
add_flag = False
for k, v in model.named_parameters():
# if ft_begin_module == k:
if ft_begin_module in k:
add_flag = True
if add_flag:
# print(k)
parameters.append({'params': v})
if ft_begin_module and not add_flag:
raise RuntimeError("wrong ft_begin_module, no module to finetune")
return parameters
def train(self):
model = self.model
train_loader = self.train_loader
test_loader = self.test_loader
iterations = self.args.iterations
lr = self.args.lr
output_dir = self.args.output_dir
l2sp_lmda = self.args.l2sp_lmda
teacher = self.teacher
reg_layers = self.reg_layers
args = self.args
model_params = self.get_fine_tuning_parameters()
if l2sp_lmda == 0:
optimizer = optim.SGD(
model_params,
lr=lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
)
else:
optimizer = optim.SGD(
model_params,
lr=lr,
momentum=args.momentum,
weight_decay=0,
)
end_iter = iterations
if args.const_lr:
scheduler = None
else:
scheduler = optim.lr_scheduler.CosineAnnealingLR(
optimizer,
end_iter,
)
teacher.eval()
ce = CrossEntropyLabelSmooth(train_loader.dataset.num_classes, args.label_smoothing).to('cuda')
featloss = torch.nn.MSELoss()
batch_time = MovingAverageMeter('Time', ':6.3f')
data_time = MovingAverageMeter('Data', ':6.3f')
ce_loss_meter = MovingAverageMeter('CE Loss', ':6.3f')
feat_loss_meter = MovingAverageMeter('Feat. Loss', ':6.3f')
l2sp_loss_meter = MovingAverageMeter('L2SP Loss', ':6.3f')
linear_loss_meter = MovingAverageMeter('LinearL2 Loss', ':6.3f')
total_loss_meter = MovingAverageMeter('Total Loss', ':6.3f')
top1_meter = MovingAverageMeter('Acc@1', ':6.2f')
train_path = osp.join(output_dir, "train.tsv")
with open(train_path, 'w') as wf:
columns = ['time', 'iter', 'Acc', 'celoss', 'featloss', 'l2sp']
wf.write('\t'.join(columns) + '\n')
test_path = osp.join(output_dir, "test.tsv")
with open(test_path, 'w') as wf:
columns = ['time', 'iter', 'Acc', 'celoss', 'featloss', 'l2sp']
wf.write('\t'.join(columns) + '\n')
adv_path = osp.join(output_dir, "adv.tsv")
with open(adv_path, 'w') as wf:
columns = ['time', 'iter', 'Acc', 'AdvAcc', 'ASR']
wf.write('\t'.join(columns) + '\n')
dataloader_iterator = iter(train_loader)
for i in range(iterations):
model.train()
optimizer.zero_grad()
end = time.time()
try:
batch, label = next(dataloader_iterator)
except:
dataloader_iterator = iter(train_loader)
batch, label = next(dataloader_iterator)
batch, label = batch.to('cuda'), label.to('cuda')
data_time.update(time.time() - end)
if args.steal:
loss, top1, soft_loss, hard_loss = self.compute_steal_loss(batch, label)
total_loss = loss
ce_loss = hard_loss
feat_loss = soft_loss
linear_loss, l2sp_loss = 0, 0
else:
loss, top1, ce_loss, feat_loss, linear_loss, l2sp_loss, total_loss = self.compute_loss(
batch, label,
ce, featloss,
)
top1_meter.update(top1)
ce_loss_meter.update(ce_loss)
feat_loss_meter.update(feat_loss)
linear_loss_meter.update(linear_loss)
l2sp_loss_meter.update(l2sp_loss)
total_loss_meter.update(total_loss)
loss.backward()
#-----------------------------------------
for k, m in enumerate(model.modules()):
# print(k, m)
if isinstance(m, nn.Conv2d):
weight_copy = m.weight.data.abs().clone()
mask = weight_copy.gt(0).float().cuda()
m.weight.grad.data.mul_(mask)
if isinstance(m, nn.Linear):
weight_copy = m.weight.data.abs().clone()
mask = weight_copy.gt(0).float().cuda()
m.weight.grad.data.mul_(mask)
#-----------------------------------------
optimizer.step()
for param_group in optimizer.param_groups:
current_lr = param_group['lr']
if scheduler is not None:
scheduler.step()
batch_time.update(time.time() - end)
if (i % args.print_freq == 0) or (i == iterations-1):
progress = ProgressMeter(
iterations,
[batch_time, data_time, top1_meter, total_loss_meter, ce_loss_meter, feat_loss_meter, l2sp_loss_meter, linear_loss_meter],
prefix="LR: {:6.3f}".format(current_lr),
output_dir=output_dir,
)
progress.display(i)
if (i % args.test_interval == 0) or (i == iterations-1):
if self.args.steal:
test_top1, test_ce_loss, test_feat_loss, test_weight_loss = self.steal_test(
# model, teacher, test_loader, loss=True
)
train_top1, train_ce_loss, train_feat_loss, train_weight_loss = self.steal_test(
# model, teacher, train_loader, loss=True
)
test_feat_layer_loss, train_feat_layer_loss = 0, 0
else:
test_top1, test_ce_loss, test_feat_loss, test_weight_loss, test_feat_layer_loss = self.test(
# model, teacher, test_loader, loss=True
)
train_top1, train_ce_loss, train_feat_loss, train_weight_loss, train_feat_layer_loss = self.test(
# model, teacher, train_loader, loss=True
)
print(
'Eval Train | Iteration {}/{} | Top-1: {:.2f} | CE Loss: {:.3f} | Feat Reg Loss: {:.6f} | L2SP Reg Loss: {:.3f}'.format(i+1, iterations, train_top1, train_ce_loss, train_feat_loss, train_weight_loss))
print(
'Eval Test | Iteration {}/{} | Top-1: {:.2f} | CE Loss: {:.3f} | Feat Reg Loss: {:.6f} | L2SP Reg Loss: {:.3f}'.format(i+1, iterations, test_top1, test_ce_loss, test_feat_loss, test_weight_loss))
localtime = time.asctime( time.localtime(time.time()) )[4:-6]
with open(train_path, 'a') as af:
train_cols = [
localtime,
i,
round(train_top1,2),
round(train_ce_loss,2),
round(train_feat_loss,2),
round(train_weight_loss,2),
]
af.write('\t'.join([str(c) for c in train_cols]) + '\n')
with open(test_path, 'a') as af:
test_cols = [
localtime,
i,
round(test_top1,2),
round(test_ce_loss,2),
round(test_feat_loss,2),
round(test_weight_loss,2),
]
af.write('\t'.join([str(c) for c in test_cols]) + '\n')
if not args.no_save:
ckpt_path = osp.join(
args.output_dir,
"ckpt.pth"
)
torch.save(
{'state_dict': model.state_dict()},
ckpt_path,
)
if ( hasattr(self, "iterative_prune") and i % args.prune_interval == 0 ):
self.iterative_prune(i)
return model.to('cpu')
def countWeightInfo(self):
...