forked from diffpy/diffpy.utils
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_diffraction_objects.py
680 lines (638 loc) · 23.4 KB
/
test_diffraction_objects.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
import re
import uuid
from pathlib import Path
from uuid import UUID
import numpy as np
import pytest
from deepdiff import DeepDiff
from freezegun import freeze_time
from diffpy.utils.diffraction_objects import XQUANTITIES, DiffractionObject
@pytest.mark.parametrize(
"do_args_1, do_args_2, expected_equality, wavelength_warning_expected",
[
# Test when __eq__ returns True and False
( # C1: Identical args, expect equality
{
"name": "same",
"scat_quantity": "x-ray",
"wavelength": 0.71,
"xtype": "q",
"xarray": np.array([1.0, 2.0]),
"yarray": np.array([100.0, 200.0]),
"metadata": {"thing1": 1},
},
{
"name": "same",
"scat_quantity": "x-ray",
"wavelength": 0.71,
"xtype": "q",
"xarray": np.array([1.0, 2.0]),
"yarray": np.array([100.0, 200.0]),
"metadata": {"thing1": 1},
},
True,
False,
),
( # C2: Different names, expect inequality
{
"name": "something",
"xtype": "tth",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
{
"name": "something else",
"xtype": "tth",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
False,
True,
),
( # C3: One without wavelength, expect inequality
{
"wavelength": 0.71,
"xtype": "tth",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
{
"xtype": "tth",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
False,
True,
),
( # C4: Different wavelength values, expect inequality
{
"wavelength": 0.71,
"xtype": "tth",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
{
"wavelength": 0.711,
"xtype": "tth",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
False,
False,
),
( # C5: Different scat_quantity, expect inequality
{
"scat_quantity": "x-ray",
"xtype": "tth",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
{
"scat_quantity": "neutron",
"xtype": "tth",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
False,
True,
),
( # C6: Different q xarray values, expect inequality
{
"xtype": "q",
"xarray": np.array([1.0, 2.0]),
"yarray": np.array([100.0, 200.0]),
},
{
"xtype": "q",
"xarray": np.array([3.0, 4.0]),
"yarray": np.array([100.0, 200.0]),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
False,
True,
),
( # C7: Different metadata, expect inequality
{
"xtype": "q",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 0, "thing2": "thing2"},
},
{
"xtype": "q",
"xarray": np.empty(0),
"yarray": np.empty(0),
"metadata": {"thing1": 1, "thing2": "thing2"},
},
False,
True,
),
],
)
def test_diffraction_objects_equality(
do_args_1, do_args_2, expected_equality, wavelength_warning_expected, wavelength_warning_msg
):
if wavelength_warning_expected:
with pytest.warns(UserWarning, match=re.escape(wavelength_warning_msg)):
do_1 = DiffractionObject(**do_args_1)
do_2 = DiffractionObject(**do_args_2)
else:
do_1 = DiffractionObject(**do_args_1)
do_2 = DiffractionObject(**do_args_2)
assert (do_1 == do_2) == expected_equality
@pytest.mark.parametrize(
"xtype, expected_xarray",
[
# Test whether on_xtype returns the correct xarray values.
# C1: tth to tth, expect no change in xarray value
# 1. "tth" provided, expect tth
("tth", np.array([30, 60])),
# 2. "2theta" provided, expect tth
("2theta", np.array([30, 60])),
# C2: "q" provided, expect q converted from tth
("q", np.array([0.51764, 1])),
# C3: "d" provided, expect d converted from tth
("d", np.array([12.13818, 6.28319])),
],
)
def test_on_xtype(xtype, expected_xarray, do_minimal_tth):
do = do_minimal_tth
actual_xrray, actual_yarray = do.on_xtype(xtype)
assert np.allclose(actual_xrray, expected_xarray)
assert np.allclose(actual_yarray, np.array([1, 2]))
def test_init_invalid_xtype():
with pytest.raises(
ValueError,
match=re.escape(
f"I don't know how to handle the xtype, 'invalid_type'. "
f"Please rerun specifying an xtype from {*XQUANTITIES, }"
),
):
return DiffractionObject(xarray=np.empty(0), yarray=np.empty(0), xtype="invalid_type", wavelength=1.54)
@pytest.mark.parametrize(
"org_do_args, target_do_args, scale_inputs, expected",
[
# Test whether the original y-array is scaled as expected
( # C1: none of q, tth, d, provided, expect to scale on the maximal x-arrays
{
"xarray": np.array([0.1, 0.2, 0.3]),
"yarray": np.array([1, 2, 3]),
"xtype": "q",
"wavelength": 2 * np.pi,
},
{
"xarray": np.array([0.05, 0.1, 0.2, 0.3]),
"yarray": np.array([5, 10, 20, 30]),
"xtype": "q",
"wavelength": 2 * np.pi,
},
{},
{"xtype": "q", "yarray": np.array([10, 20, 30])},
),
( # C2: Same x-arrays
# x-value has exact matches at tth=60 (y=60) and tth=60 (y=6),
# for original and target diffraction objects,
# expect original y-array to multiply by 6/60=1/10
{
"xarray": np.array([10, 15, 25, 30, 60, 140]),
"yarray": np.array([10, 20, 25, 30, 60, 100]),
"xtype": "tth",
"wavelength": 2 * np.pi,
},
{
"xarray": np.array([10, 20, 25, 30, 60, 140]),
"yarray": np.array([2, 3, 4, 5, 6, 7]),
"xtype": "tth",
"wavelength": 2 * np.pi,
},
{"tth": 60},
{"xtype": "tth", "yarray": np.array([1, 2, 2.5, 3, 6, 10])},
),
( # C3: Different x-arrays with same length,
# x-value has closest match at q=0.12 (y=10) and q=0.14 (y=1)
# for original and target diffraction objects,
# expect original y-array to multiply by 1/10
{
"xarray": np.array([0.12, 0.24, 0.31, 0.4]),
"yarray": np.array([10, 20, 40, 60]),
"xtype": "q",
"wavelength": 2 * np.pi,
},
{
"xarray": np.array([0.14, 0.24, 0.31, 0.4]),
"yarray": np.array([1, 3, 4, 5]),
"xtype": "q",
"wavelength": 2 * np.pi,
},
{"q": 0.1},
{"xtype": "q", "yarray": np.array([1, 2, 4, 6])},
),
( # C4: Different x-array lengths
# x-value has closest matches at tth=61 (y=50) and tth=62 (y=5),
# for original and target diffraction objects,
# expect original y-array to multiply by 5/50=1/10
{
"xarray": np.array([10, 25, 30.1, 40.2, 61, 120, 140]),
"yarray": np.array([10, 20, 30, 40, 50, 60, 100]),
"xtype": "tth",
"wavelength": 2 * np.pi,
},
{
"xarray": np.array([20, 25.5, 32, 45, 50, 62, 100, 125, 140]),
"yarray": np.array([1.1, 2, 3, 3.5, 4, 5, 10, 12, 13]),
"xtype": "tth",
"wavelength": 2 * np.pi,
},
{"tth": 60},
{"xtype": "tth", "yarray": np.array([1, 2, 3, 4, 5, 6, 10])},
),
( # C5: Same x-array and y-array with 2.1 offset, expect y-array to shift up by 2.1
{
"xarray": np.array([10, 15, 25, 30, 60, 140]),
"yarray": np.array([2, 3, 4, 5, 6, 7]),
"xtype": "tth",
"wavelength": 2 * np.pi,
},
{
"xarray": np.array([10, 15, 25, 30, 60, 140]),
"yarray": np.array([2, 3, 4, 5, 6, 7]),
"xtype": "tth",
"wavelength": 2 * np.pi,
},
{"tth": 60, "offset": 2.1},
{"xtype": "tth", "yarray": np.array([4.1, 5.1, 6.1, 7.1, 8.1, 9.1])},
),
],
)
def test_scale_to(org_do_args, target_do_args, scale_inputs, expected):
original_do = DiffractionObject(**org_do_args)
target_do = DiffractionObject(**target_do_args)
scaled_do = original_do.scale_to(target_do, **scale_inputs)
# Check the intensity data is the same as expected
assert np.allclose(scaled_do.on_xtype(expected["xtype"])[1], expected["yarray"])
@pytest.mark.parametrize(
"org_do_args, target_do_args, scale_inputs",
[
# Test expected errors produced from scale_to() with invalid inputs
( # C2: tth and d both provided, expect ValueError
{
"xarray": np.array([10, 25, 30.1, 40.2, 61, 120, 140]),
"yarray": np.array([10, 20, 30, 40, 50, 60, 100]),
"xtype": "tth",
"wavelength": 2 * np.pi,
},
{
"xarray": np.array([20, 25.5, 32, 45, 50, 62, 100, 125, 140]),
"yarray": np.array([1.1, 2, 3, 3.5, 4, 5, 10, 12, 13]),
"xtype": "tth",
"wavelength": 2 * np.pi,
},
{
"tth": 60,
"d": 10,
},
),
],
)
def test_scale_to_bad(org_do_args, target_do_args, scale_inputs):
original_do = DiffractionObject(**org_do_args)
target_do = DiffractionObject(**target_do_args)
with pytest.raises(
ValueError,
match="You must specify none or exactly one of 'q', 'tth', or 'd'. "
"Please provide either none or one value.",
):
original_do.scale_to(target_do, **scale_inputs)
@pytest.mark.parametrize(
"do_args, get_array_index_inputs, expected_index",
[
# Test get_array_index() returns the expected index given xtype and value
( # C1: Target value is in the xarray and xtype is identical, expect exact index match
{
"wavelength": 4 * np.pi,
"xarray": np.array([30.005, 60]),
"yarray": np.array([1, 2]),
"xtype": "tth",
},
{
"xtype": "tth",
"value": 30.005,
},
0,
),
( # C2: Target value lies in the array, expect the (first) closest index
{
"wavelength": 4 * np.pi,
"xarray": np.array([30, 60]),
"yarray": np.array([1, 2]),
"xtype": "tth",
},
{
"xtype": "tth",
"value": 45,
},
0,
),
(
{
"wavelength": 4 * np.pi,
"xarray": np.array([30, 60]),
"yarray": np.array([1, 2]),
"xtype": "tth",
},
{
"xtype": "q",
"value": 0.25,
},
0,
),
# C3: Target value out of the range, expect the closest index
( # 1. Test with xtype of "q"
{
"wavelength": 4 * np.pi,
"xarray": np.array([0.25, 0.5, 0.71]),
"yarray": np.array([1, 2, 3]),
"xtype": "q",
},
{
"xtype": "q",
"value": 0.1,
},
0,
),
( # 2. Test with xtype of "tth"
{
"wavelength": 4 * np.pi,
"xarray": np.array([30, 60]),
"yarray": np.array([1, 2]),
"xtype": "tth",
},
{
"xtype": "tth",
"value": 63,
},
1,
),
],
)
def test_get_array_index(do_args, get_array_index_inputs, expected_index):
do = DiffractionObject(**do_args)
actual_index = do.get_array_index(get_array_index_inputs["xtype"], get_array_index_inputs["value"])
assert actual_index == expected_index
def test_get_array_index_bad():
do = DiffractionObject(wavelength=2 * np.pi, xarray=np.array([]), yarray=np.array([]), xtype="tth")
with pytest.raises(ValueError, match=re.escape("The 'tth' array is empty. Please ensure it is initialized.")):
do.get_array_index(xtype="tth", xvalue=30)
def test_dump(tmp_path, mocker):
x, y = np.linspace(0, 5, 6), np.linspace(0, 5, 6)
directory = Path(tmp_path)
file = directory / "testfile"
with pytest.warns(RuntimeWarning, match="divide by zero encountered in divide"):
do = DiffractionObject(
wavelength=1.54,
name="test",
scat_quantity="x-ray",
xarray=np.array(x),
yarray=np.array(y),
xtype="q",
metadata={"thing1": 1, "thing2": "thing2", "package_info": {"package2": "3.4.5"}},
)
mocker.patch("importlib.metadata.version", return_value="3.3.0")
with freeze_time("2012-01-14"):
do.dump(file, "q")
with open(file, "r") as f:
actual = f.read()
expected = (
"[DiffractionObject]\nname = test\nwavelength = 1.54\nscat_quantity = x-ray\nthing1 = 1\n"
"thing2 = thing2\npackage_info = {'package2': '3.4.5', 'diffpy.utils': '3.3.0'}\n"
"creation_time = 2012-01-14 00:00:00\n\n"
"#### start data\n0.000000000000000000e+00 0.000000000000000000e+00\n"
"1.000000000000000000e+00 1.000000000000000000e+00\n"
"2.000000000000000000e+00 2.000000000000000000e+00\n"
"3.000000000000000000e+00 3.000000000000000000e+00\n"
"4.000000000000000000e+00 4.000000000000000000e+00\n"
"5.000000000000000000e+00 5.000000000000000000e+00\n"
)
assert actual == expected
@pytest.mark.parametrize(
"do_init_args, expected_do_dict, divide_by_zero_warning_expected, wavelength_warning_expected",
[
# Test __dict__ of DiffractionObject instance initialized with valid arguments
( # C1: Instantiate DO with empty arrays, expect it to be a valid DO, but with everything empty
{
"xarray": np.empty(0),
"yarray": np.empty(0),
"xtype": "tth",
},
{
"_all_arrays": np.array([]),
"_input_xtype": "tth",
"metadata": {},
"name": "",
"scat_quantity": "",
"qmin": np.float64(np.inf),
"qmax": np.float64(0.0),
"tthmin": np.float64(np.inf),
"tthmax": np.float64(0.0),
"dmin": np.float64(np.inf),
"dmax": np.float64(0.0),
"wavelength": None,
},
False,
True,
),
( # C2: Instantiate just DO with empty array like in C1 but with wavelength, xtype, name, and metadata
# expect a valid DO with empty arrays, but with some non-array attributes
{
"xarray": np.empty(0),
"yarray": np.empty(0),
"xtype": "tth",
"name": "test_name",
"wavelength": 1.54,
"metadata": {"item_1": "1", "item_2": "2"},
},
{
"_all_arrays": np.array([]),
"_input_xtype": "tth",
"metadata": {"item_1": "1", "item_2": "2"},
"name": "test_name",
"scat_quantity": "",
"qmin": np.float64(np.inf),
"qmax": np.float64(0.0),
"tthmin": np.float64(np.inf),
"tthmax": np.float64(0.0),
"dmin": np.float64(np.inf),
"dmax": np.float64(0.0),
"wavelength": 1.54,
},
False,
False,
),
( # C3: Minimum arguments provided for init with non-empty values for xarray and yarray and wavelength
# expect all attributes set without None
{
"xarray": np.array([0.0, 90.0, 180.0]),
"yarray": np.array([1.0, 2.0, 3.0]),
"xtype": "tth",
"wavelength": 4.0 * np.pi,
},
{
"_all_arrays": np.array(
[
[1.0, 0.0, 0.0, np.float64(np.inf)],
[2.0, 1.0 / np.sqrt(2), 90.0, np.sqrt(2) * 2 * np.pi],
[3.0, 1.0, 180.0, 1.0 * 2 * np.pi],
]
),
"metadata": {},
"_input_xtype": "tth",
"name": "",
"scat_quantity": "",
"qmin": np.float64(0.0),
"qmax": np.float64(1.0),
"tthmin": np.float64(0.0),
"tthmax": np.float64(180.0),
"dmin": np.float64(2 * np.pi),
"dmax": np.float64(np.inf),
"wavelength": 4.0 * np.pi,
},
True,
False,
),
( # C4: Same as C3, but with an optional scat_quantity argument, expect non-empty string for scat_quantity
{
"xarray": np.array([np.inf, 2 * np.sqrt(2) * np.pi, 2 * np.pi]),
"yarray": np.array([1.0, 2.0, 3.0]),
"xtype": "d",
"wavelength": 4.0 * np.pi,
"scat_quantity": "x-ray",
},
{
"_all_arrays": np.array(
[
[1.0, 0.0, 0.0, np.float64(np.inf)],
[2.0, 1.0 / np.sqrt(2), 90.0, np.sqrt(2) * 2 * np.pi],
[3.0, 1.0, 180.0, 1.0 * 2 * np.pi],
]
),
"metadata": {},
"_input_xtype": "d",
"name": "",
"scat_quantity": "x-ray",
"qmin": np.float64(0.0),
"qmax": np.float64(1.0),
"tthmin": np.float64(0.0),
"tthmax": np.float64(180.0),
"dmin": np.float64(2 * np.pi),
"dmax": np.float64(np.inf),
"wavelength": 4.0 * np.pi,
},
False,
False,
),
],
)
def test_init_valid(
do_init_args,
expected_do_dict,
divide_by_zero_warning_expected,
wavelength_warning_expected,
wavelength_warning_msg,
):
if divide_by_zero_warning_expected:
with pytest.warns(RuntimeWarning, match="divide by zero encountered in divide"):
actual_do_dict = DiffractionObject(**do_init_args).__dict__
elif wavelength_warning_expected:
with pytest.warns(UserWarning, match=re.escape(wavelength_warning_msg)):
actual_do_dict = DiffractionObject(**do_init_args).__dict__
else:
actual_do_dict = DiffractionObject(**do_init_args).__dict__
diff = DeepDiff(
actual_do_dict, expected_do_dict, ignore_order=True, significant_digits=13, exclude_paths="root['_uuid']"
)
assert diff == {}
@pytest.mark.parametrize(
"do_init_args, expected_error_msg",
[
# Test expected error messages when 3 required arguments not provided in DiffractionObject init
( # C1: No arguments provided, expect 3 required positional arguments error
{},
"missing 3 required positional arguments: 'xarray', 'yarray', and 'xtype'",
),
( # C2: Only xarray and yarray provided, expect 1 required positional argument error
{"xarray": np.array([0.0, 90.0]), "yarray": np.array([0.0, 90.0])},
"missing 1 required positional argument: 'xtype'",
),
],
)
def test_init_invalid_args(
do_init_args,
expected_error_msg,
):
with pytest.raises(TypeError, match=expected_error_msg):
DiffractionObject(**do_init_args)
def test_all_array_getter(do_minimal_tth):
actual_do = do_minimal_tth
print(actual_do.all_arrays)
expected_all_arrays = [[1, 0.51763809, 30, 12.13818192], [2, 1, 60, 6.28318531]]
assert np.allclose(actual_do.all_arrays, expected_all_arrays)
def test_all_array_setter(do_minimal):
do = do_minimal
with pytest.raises(
AttributeError,
match="Direct modification of attribute 'all_arrays' is not allowed. "
"Please use 'input_data' to modify 'all_arrays'.",
):
do.all_arrays = np.empty((4, 4))
def test_uuid_getter(do_minimal):
do = do_minimal
assert hasattr(do, "uuid")
assert isinstance(do.uuid, UUID)
assert len(str(do.uuid)) == 36
def test_uuid_getter_with_mock(mocker, do_minimal):
mocker.patch.object(
DiffractionObject, "uuid", new_callable=lambda: UUID("d67b19c6-3016-439f-81f7-cf20a04bee87")
)
do = do_minimal
assert do.uuid == UUID("d67b19c6-3016-439f-81f7-cf20a04bee87")
def test_uuid_setter_error(do_minimal):
do = do_minimal
with pytest.raises(
AttributeError,
match="Direct modification of attribute 'uuid' is not allowed. Please use 'input_data' to modify 'uuid'.",
):
do.uuid = uuid.uuid4()
def test_xarray_yarray_length_mismatch():
with pytest.raises(
ValueError,
match="'xarray' and 'yarray' are different lengths. "
"They must correspond to each other and have the same length. Please "
"re-initialize 'DiffractionObject'with valid 'xarray' and 'yarray's",
):
DiffractionObject(
xarray=np.array([1.0, 2.0]), yarray=np.array([0.0, 0.0, 0.0]), xtype="tth", wavelength=1.54
)
def test_input_xtype_getter(do_minimal):
do = do_minimal
assert do.input_xtype == "tth"
def test_input_xtype_setter_error(do_minimal):
do = do_minimal
with pytest.raises(
AttributeError,
match="Direct modification of attribute 'input_xtype' is not allowed. "
"Please use 'input_data' to modify 'input_xtype'.",
):
do.input_xtype = "q"
def test_copy_object(do_minimal):
do = do_minimal
do_copy = do.copy()
assert do == do_copy
assert id(do) != id(do_copy)