-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPOA.py
572 lines (530 loc) · 22.3 KB
/
POA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
from openpyxl.writer.excel import ExcelWriter
from openpyxl.workbook import Workbook
from types import MappingProxyType
from openpyxl.utils import get_column_letter
import xlwt
import pandas as pd
import numpy as np
import xlrd
import xlsxwriter
import matplotlib.pyplot as plt
def v_z_chazhi(x0,a,n):#Reservoir Capacity-Water Level Interpolation
for j in range(1,n):
if x0<=y2[j][a] and x0>y2[j-1][a]:
return y1[j-1][a]+(x0-y2[j-1][a])*(y1[j][a]-y1[j-1][a])/(y2[j][a]-y2[j-1][a])
if x0<=y2[0][a]:
return y1[0][a]
if x0>y2[n-1][a]:
return y1[n-1][a]
def z_v_chazhi(x0,a,n):#Water Level-Reservoir Capacity Interpolation
for j in range(1,n):
if x0<=y1[j][a] and x0>y1[j-1][a]:
return y2[j-1][a]+(x0-y1[j-1][a])*(y2[j][a]-y2[j-1][a])/(y1[j][a]-y1[j-1][a])
if x0<=y1[0][a]:
return y2[0][a]
if x0>y1[n-1][a]:
return y2[n-1][a]
y1=np.zeros((200,40))
y2=np.zeros((200,40))
y3=np.zeros((200,40))
y4=np.zeros((200,40))
# Initialization
vmin=np.zeros(10)
vmax=np.zeros(10)
num=np.zeros((20),dtype=int)
num1=np.zeros((20),dtype=int)
H1=np.zeros(10)
stll=np.zeros(3)
stll[0]=100
stll[1]=100
Nzh=np.zeros(10)# ensured output capacity
yr=np.zeros((200,40))# output capacity
yqx=np.zeros((200,100))
t=np.zeros(100)
V=np.zeros((200,40))
V[0][0]=5.43
zss=np.zeros((200,40))
V[1][0]=14.9
wb=xlrd.open_workbook('特征曲线.xlsx')
table=wb.sheets()[0]
for i in range(0,22):
y1[i][0]=float(table.cell_value(i,0))
y2[i][0]=float(table.cell_value(i,1))
for i in range(0,25):
y1[i][1]=float(table.cell_value(i,2))
y2[i][1]=float(table.cell_value(i,3))
table1=wb.sheets()[1]
for i in range(0,10):
y3[i][0]=float(table1.cell_value(i,0))
y4[i][0]=float(table1.cell_value(i,1))
for i in range(0,9):
y3[i][1]=float(table1.cell_value(i,2))
y4[i][1]=float(table1.cell_value(i,3))
# Load normal water level, dead water level, and output capacity.
zss[0][0]=2855
zss[0][6]=2889
zss[0][11]=2855
zss[1][0]=2672
zss[1][6]=2702
zss[1][11]=2672
H1[2]=55
H1[3]=84
H1[4]=78
H1[5]=144
H1[6]=144.5
num[0]=22
num[1]=25
vmin[1]=14.9
vmax[1]=23.14
vmax[0]=10.8
vmin[0]=5.43
Nzh[0]=2240000
Nzh[1]=2000000
Nzh[2]=750000
Nzh[3]=1200000
Nzh[4]=826000
Nzh[5]=2400000
Nzh[6]=2400000
def z_q_chazhi(x1,b,n1):#Downstream water level - Power generation flow interpolation
for i in range(1,n1):
if x1<y4[i][b] and x1>y4[i-1][b]:
return y3[i-1][b]+(x1-y4[i-1][b])*(y3[i][b]-y3[i-1][b])/(y4[i][b]-y4[i-1][b])
if x1<=y4[0][b]:
return y3[0][b]
if x1>y4[n1-1][b]:
return y3[n1-1][b]
def q_z_chazhi(x1,b,n1):# Power generation flow—— water level interpolation
for i in range(1,n1):
if x1<y3[i][b] and x1>y3[i-1][b]:
return y4[i-1][b]+(x1-y3[i-1][b])*(y4[i][b]-y4[i-1][b])/(y3[i][b]-y3[i-1][b])
if x1<=y3[0][b]:
return y4[0][b]
if x1>y3[n1-1][b]:
return y4[n1-1][b]
E1=np.zeros((200,100))
zzz=np.zeros((20,30))
t1=np.zeros(20)
t1[8]=744.0
t1[9]=672.0
t1[10]=744.0
t1[11]=720.0
t1[12]=744.0
t1[1]=720.0
t1[2]=744.0
t1[3]=744.0
t1[4]=720.0
t1[5]=744.0
t1[6]=720.0
t1[7]=744.0
E3=0
qs=np.zeros((200,30))
zdq=np.zeros(10)# allowed flow
yv=np.zeros((100,40)) # Discrete Reservoir Capacity
V2=np.zeros((61000,30))
qxs=np.zeros((200,40))# Hydropower Generation Flow Rate
yqx=np.zeros((200,100))
qx1=np.zeros((200,30))
hs=np.zeros((200,13))
zx=np.zeros((200,40))# Downstream Water Level
N=7
ls=np.zeros((200,30))# Inflow Volume
M=12
qss=np.zeros((200,40))
N1=np.zeros((200,40))
qxs1=np.zeros((200,40))
vd=np.zeros(20)
q2=np.zeros((100,20))
max_income=np.zeros(100)
y_v=np.zeros((200,40))
y_v[0][6]=10.7995
y_v[1][6]=23.14
y_v[0][12]=5.43
y_v[1][12]=14.9
E=np.zeros((200,40))
E1=np.zeros(61000)
E2=np.zeros(61000)
E4=np.zeros((200,30))
N5=np.zeros(20)
E5=np.zeros(20)# Optimized Power Generation for Each Time Period
zdq[0]=1483
zdq[1]=1541
zdq[2]=1603.2
zdq[3]=1622.4
zdq[4]=1631
zdq[5]=1866.4
zdq[6]=2000
q1=np.zeros((50,13))# Reservoir Inflow
q3=np.zeros(200)# Interval Flow
N3=np.zeros(200)
qx=np.zeros((200,40))# Reservoir Outflow
qss1=np.zeros((200,30))
num1[1]=9
num1[0]=10
ruku=[]
chuku=[]
init_plot=[]
winner_plot=[]
V1=np.zeros((61000,50))
def tjsk(x,j,r):
zss[j][r-1]=v_z_chazhi(V[j][r-1],j,num[j])
bvs=V[j][r-1]/2.0+(V[j][r]+x*0.00005)/2.0# First Section Reservoir Capacity
bvx=(V[j][r]+x*0.00005)/2.0+V[j][r+1]/2.0# Second Section Reservoir Capacity
zss[j][r]=v_z_chazhi(bvs,j,num[j])#第一段水库水位,插值得到
zss[j][r+1]=v_z_chazhi(bvx,j,num[j])#第二段水库水位,插值得到
qxs1[j][r]=q1[j][r]+(V[j][r-1]-V[j][r]-x*0.00005)*100000000/t[r]#前一段过水发电流量
qxs1[j][r+1]=q1[j][r+1]+(V[j][r]+x*0.00005-V[j][r+1])*100000000/t[r+1]
if qxs1[j][r]>stll[j] and qxs1[j][r+1]>stll[j]:#大于最小下泄流量(即生态流量)
if qxs1[j][r]<=zdq[j]:#小于最大允许流量
zx[j][r]=q_z_chazhi(qxs1[j][r],j,num1[j])#根据发电流量插补出下游水位
hs[j][r]=(zss[j][r]+zss[j][r-1])/2.0-zx[j][r]#前一时段的平均水头=前一时段的水库水位-下游水位
N4[j][r]=8.7*qxs1[j][r]*hs[j][r]#出力
qx[j][r]=qxs1[j][r]
if N4[j][r]>Nzh[j]:
N4[j][r]=Nzh[j]
qxs1[j][r]=N4[j][r]/8.7/hs[j][r]
qs[j][r]=qx[j][r]-qxs1[j][r]
if qxs1[j][r]>zdq[j]:# Exceeds Maximum Allowable Flow
qxs1[j][r]=zdq[j]
zx[j][r]=q_z_chazhi(qxs1[j][r],j,num1[j])
hs[j][r]=(zss[j][r]+zss[j][r-1])/2.0-zx[j][r]
N4[j][r]=8.7*qxs1[j][r]*hs[j][r]
qx[j][r]=qxs1[j][r]
if N4[j][r]>Nzh[j]:
N4[j][r]=Nzh[j]
qxs1[j][r]=N4[j][r]/8.7/hs[j][r]
qs[j][r]=qx[j][r]-qxs1[j][r]
if qxs1[j][r+1]<=zdq[j]:
zx[j][r+1]=q_z_chazhi(qxs1[j][r+1],j,num1[j])
hs[j][r+1]=(zss[j][r+1]+zss[j][r])/2.0-zx[j][r+1]
N4[j][r+1]=8.7*qxs1[j][r+1]*hs[j][r+1]
qx[j][r+1]=qxs1[j][r+1]
if N4[j][r+1]>Nzh[j]:
N4[j][r+1]=Nzh[j]
qxs1[j][r+1]=N4[j][r+1]/8.7/hs[j][r+1]
qs[j][r+1]=qx[j][r+1]-qxs1[j][r+1]
if qxs1[j][r+1]>zdq[j]:
qxs1[j][r+1]=zdq[j]
zx[j][r+1]=q_z_chazhi(qxs1[j][r+1],j,num1[j])
hs[j][r+1]=(zss[j][r+1]+zss[j][r])/2.0-zx[j][r+1]
qx[j][r+1]=qxs1[j][r+1]
N4[j][r+1]=8.7*qxs1[j][r+1]*hs[j][r+1]
if N4[j][r+1]>Nzh[j]:
N4[j][r+1]=Nzh[j]
qxs1[j][r+1]=N4[j][r+1]/8.7/hs[j][r+1]
qs[j][r+1]=qx[j][r+1]-qxs1[j][r+1]
return N4[j][r],N4[j][r+1],qxs1[j][r],qxs1[j][r+1],qs[j][r],qs[j][r+1]
q4=np.zeros((20,20))
N2=np.zeros(20)
YeBaTan_N=[]
LaWa_N=[]
BaTang_N=[]
SuWaLong_N=[]
ChangBo_N=[]
XuLong_N=[]
BenZiLan_N=[]
ZN=np.zeros(20)
N_N=0
if __name__=="__main__":
xlsx=xlrd.open_workbook('枯水年.xlsx')
sheet1=xlsx.sheets()[0]
# print(type(sheet1))
# print(sheet1.cell_value(1,3))
# Load Initial Trajectory
N4=np.zeros((200,40))
for i in range(1,13):
V[0][i]=float(sheet1.cell_value(4,i))
zzz[0][i]=float(sheet1.cell_value(2,i))
yr[0][i]=float(sheet1.cell_value(8,i))
N4[0][i]=yr[0][i]
yqx[0][i]=float(sheet1.cell_value(11,i))
t[i]=float(sheet1.cell_value(7,i))
zss[0][i]=float(sheet1.cell_value(2,i))
qss1[0][i]=float(sheet1.cell_value(12,i))
qx1[0][i]=qss1[0][i]+yqx[0][i]
sheet2=xlsx.sheets()[1]
for i in range(1,13):
V[1][i]=float(sheet2.cell_value(4,i))
zzz[1][i]=float(sheet2.cell_value(2,i))
yr[1][i]=float(sheet2.cell_value(8,i))
N4[1][i]=yr[1][i]
yqx[1][i]=float(sheet2.cell_value(11,i))
zss[1][i]=float(sheet2.cell_value(2,i))
qss1[1][i]=float(sheet2.cell_value(12,i))
qx1[1][i]=qss1[1][i]+yqx[1][i]
xlsx3=xlrd.open_workbook('枯水年.xlsx')
for j in range(2,7):
sheet1=xlsx3.sheets()[j]
for i in range(1,sheet1.ncols):
yr[j][i]=sheet1.cell_value(6,i)
N4[j][i]=yr[j][i]
ls[j][i]=sheet1.cell_value(3,i)
yqx[j][i]=sheet1.cell_value(7,i)
qss1[j][i]=float(sheet1.cell_value(8,i))
wb=xlrd.open_workbook('特征曲线.xlsx')
table=wb.sheets()[0]
for i in range(0,22):
y1[i][0]=float(table.cell_value(i,0))
y2[i][0]=float(table.cell_value(i,1))
for i in range(0,25):
y1[i][1]=float(table.cell_value(i,2))
y2[i][1]=float(table.cell_value(i,3))
table1=wb.sheets()[1]
for i in range(0,10):
y3[i][0]=float(table1.cell_value(i,0))
y4[i][0]=float(table1.cell_value(i,1))
for i in range(0,9):
y3[i][1]=float(table1.cell_value(i,2))
y4[i][1]=float(table1.cell_value(i,3))
xlsx_1=xlrd.open_workbook('流量.xlsx')
sheet1=xlsx_1.sheets()[2]
# print(type(sheet1))
# print(sheet1.cell_value(1,3))
# print(type(sheet1.cell_value(1,3)))
for j in range(0,7):
for i in range(1,sheet1.ncols):
q1[j][i]=float(sheet1.cell_value(j+1,i))
q3[i]=(q1[1][i]-q1[0][i])
for i in range(1,13):
for j in range(0,7):
N3[i]+=yr[j][i]
N_N+=N3[i]
init_plot.append(N3[i]/10000)
E1[i]=N3[i]*t1[i]
E3+=N3[i]*t1[i]
for j in range(0,7):
N2[j]=0
for i in range(1,13):
N2[j]+=yr[j][i]
print(N2[j])
for i in range(1,12):
max_income[i]=E1[i]+E1[i+1]
#N3[8]=2271000
#N3[9]=1990000
N3[7]=2000000
N3[12]=2000000
for i in range(1,13):
q4[1][i]=yqx[0][i]+q3[i]
E2[0]=E3
for k in range(1,60000):
E2[k]=E2[k-1]
for r in range(1,12):
for m in range(-1,2):
y_v[0][r]=V[0][r]+m*0.00005
if y_v[0][r]>5.43 and y_v[0][r]<10.8:
# ZN=0
# ZN1=0
N1[0][r],N1[0][r+1],qxs[0][r],qxs[0][r+1],qss[0][r],qss[0][r+1]=tjsk(m,0,r)
# ZN1+=N1[0][r+1]
# ZN+=N1[0][r]
q1[1][r]=qxs[0][r]+q3[r]+qss[0][r]
q1[1][r+1]=qxs[0][r+1]+q3[r+1]+qss[0][r+1]
for n in range(-1,2):
y_v[1][r]=V[1][r]+n*0.00005
if y_v[1][r]>=14.9 and y_v[1][r]<=23.14:
V1[k][r]=y_v[0][r]
V2[k][r]=y_v[1][r]
g=0
g1=0
sum1=0
N1[1][r],N1[1][r+1],qxs[1][r],qxs[1][r+1],qss[1][r],qss[1][r+1]=tjsk(n,1,r)
# sum+=N1[1][r]
# sum1+=N1[1][r+1]
for j in range(2,7):
#无调节水电站
qxs[j][r]=qxs[j-1][r]+(q1[j][r]-q1[j-1][r])+qss[j-1][r]
N1[j][r]=8.7*qxs[j][r]*H1[j]
qxs[j][r+1]=qxs[j-1][r+1]+(q1[j][r+1]-q1[j-1][r+1])+qss[j-1][r+1]
N1[j][r+1]=8.7*qxs[j][r+1]*H1[j]
qx[j][r]=qxs[j][r]
qx[j][r+1]=qxs[j][r+1]
if N1[j][r]>Nzh[j]:
N1[j][r]=Nzh[j]
qxs[j][r]=N1[j][r]/8.7/H1[j]
qss[j][r]=qx[j][r]-qxs[j][r]
if N1[j][r+1]>Nzh[j]:
N1[j][r+1]=Nzh[j]
qxs[j][r+1]=N1[j][r+1]/8.7/H1[j]
qss[j][r+1]=qx[j][r+1]-qxs[j][r+1]
# sum+=N1[j][r]
# sum1+=N1[j][r+1]
N_N=N_N-ZN[r]-ZN[r+1]
ZN[r]=0
ZN[r+1]=0
for q in range(0,7):
ZN[r]+=N1[q][r]
ZN[r+1]+=N1[q][r+1]
#计算前后两时段发电量
N_N=N_N+ZN[r]+ZN[r+1]
total=ZN[r]*t1[r]+ZN[r+1]*t1[r+1]
# print(total)
# print(ZN)
# print(N3[r])
# print(ZN1)
# print(N3[r+1])
if ZN[r]<2000000:
total=total+10000000000*(ZN[r]-2000000)
if ZN[r+1]<2000000:
total=total+10000000000*(ZN[r+1]-2000000)
# print(total)
# print(max_income[r])
if total>max_income[r]:
q4[1][r]=q1[1][r]
E2[k]=E2[k]-max_income[r]
max_income[r]=total
E2[k]=E2[k]+max_income[r]
for z in range(0,7):
yr[z][r]=N1[z][r]
yr[z][r+1]=N1[z][r+1]
yqx[z][r]=qxs[z][r]
yqx[z][r+1]=qxs[z][r+1]
qss1[z][r]=qss[z][r]
qss1[z][r+1]=qss[z][r+1]
qx1[z][r]=qss1[z][r]+yqx[z][r]
qx1[z][r+1]=qss1[z][r+1]+yqx[z][r+1]
for x in range(2,7):
ls[x][r]=qxs[x-1][r]+(q1[x][r]-q1[x-1][r])+qss[x-1][r]
ls[x][r+1]=qxs[x-1][r+1]+(q1[x][r+1]-q1[x-1][r+1])+qss[x-1][r+1]
V[0][r]=y_v[0][r]
V[1][r]=y_v[1][r]
zzz[0][r]=v_z_chazhi(V[0][r],0,22)
zzz[1][r]=v_z_chazhi(V[1][r],1,25)
print(r)
print(V[0][r])
print(V[1][r])
else:
continue
else:
continue
if abs((E2[k]-E2[k-1])/E2[k])<0.00000006:
workbook=xlsxwriter.Workbook('结果1.xlsx')
worksheet=workbook.add_worksheet()
col=0
for i in range(1,200):
row=0
for r in range(1,13):
worksheet.write(row,col,V1[i][r])
row+=1
col+=1
worksheet=workbook.add_worksheet()
col1=0
for i in range(1,200):
row1=0
for r in range(1,13):
worksheet.write(row1,col1,V2[i][r])
row1+=1
col1+=1
workbook.close()
"""for r in range(1,13):
zzz[0][r]=v_z_chazhi(V[0][r],0,22)
zzz[1][r]=v_z_chazhi(V[1][r],1,25)
for r in range(1,12):
for z in range(0,7):
yr[z][r]=N1[z][r]
yr[z][r+1]=N1[z][r+1]
yqx[z][r]=qxs[z][r]
yqx[z][r+1]=qxs[z][r+1]
qss1[z][r]=qss[z][r]
qss1[z][r+1]=qss[z][r+1]
qx1[z][r]=qss1[z][r]+yqx[z][r]
qx1[z][r+1]=qss1[z][r+1]+yqx[z][r+1]
for x in range(2,7):
ls[x][r]=qxs[x-1][r]+(q1[x][r]-q1[x-1][r])+qss[x-1][r]
ls[x][r+1]=qxs[x-1][r+1]+(q1[x][r+1]-q1[x-1][r+1])+qss[x-1][r+1]"""
for y in range(1,13):
N5[y]=0
E5[y]=0
E1[y]=E1[y]/100000000
for x in range(0,7):
E4[x][y]=yr[x][y]*t1[y]/100000000
yr[x][y]=yr[x][y]/10000
N5[y]+=yr[x][y]
E5[y]+=E4[x][y]
df1_dic={'叶巴滩水位':zzz[0][1:13],'入库流量':q1[0][1:13],'叶巴滩发电流量':yqx[0][1:13],'叶巴滩弃水':qss1[0][1:13],'叶巴滩出力':yr[0][1:13],'叶巴滩发电量':E4[0][1:13],
'拉哇水位':zzz[1][1:13],'入库流量1':q4[1][1:13],'拉哇发电流量':yqx[1][1:13],'拉哇弃水':qss1[1][1:13],'拉哇出力':yr[1][1:13],'拉哇发电量':E4[1][1:13],
'来水流量2':ls[2][1:13],'发电流量2':yqx[2][1:13],'巴塘弃水':qss1[2][1:13],'巴塘出力':yr[2][1:13],'巴塘发电量':E4[2][1:13],
'来水流量3':ls[3][1:13],'发电流量3':yqx[3][1:13],'苏洼龙弃水':qss1[3][1:13],'苏洼龙出力':yr[3][1:13],'苏洼龙发电量':E4[3][1:13],
'来水流量4':ls[4][1:13],'发电流量4':yqx[4][1:13],'昌波弃水':qss1[4][1:13],'昌波出力':yr[4][1:13],'昌波发电量':E4[4][1:13],
'来水流量5':ls[5][1:13],'发电流量5':yqx[5][1:13],'旭龙弃水':qss1[5][1:13],'旭龙出力':yr[5][1:13],'旭龙发电量':E4[5][1:13],
'来水流量6':ls[6][1:13],'发电流量6':yqx[6][1:13],'奔子栏弃水':qss1[6][1:13],'奔子栏出力':yr[6][1:13],'奔子栏发电量':E4[6][1:13],'总出力':N5[1:13],'优化前各时段发电量':E1[1:13],'优化后各时段发电量':E5[1:13]}
df1=pd.DataFrame.from_dict(df1_dic)
# for i in range(13):
# df1.append({V[0][i:i],yr[0][i:i]})
df1.to_excel('枯水年结果.xlsx',sheet_name='Sheet3')
for y in range(1,13):
print(N3[y])
print(k)
print(E2[k])
print(E2[k-1])
for i in range(1,13):
YeBaTan_N.append(yr[0][i])
LaWa_N.append(yr[1][i])
BaTang_N.append(yr[2][i])
SuWaLong_N.append(yr[3][i])
ChangBo_N.append(yr[4][i])
XuLong_N.append(yr[5][i])
BenZiLan_N.append(yr[6][i])
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
plt.figure(1)
#ind=np.arange(M)
bar_width=0.1
index_N1=np.arange(12)
index_N2=index_N1+bar_width
index_N3=index_N2+bar_width
index_N4=index_N3+bar_width
index_N5=index_N4+bar_width
index_N6=index_N5+bar_width
index_N7=index_N6+bar_width
plt.bar(index_N1,height=YeBaTan_N,width=bar_width,color='#FFA500',label='叶巴滩各月出力')
plt.bar(index_N2,height=LaWa_N,width=bar_width,color='r',label='拉哇各月出力')
plt.bar(index_N3,height=BaTang_N,width=bar_width,color='#87CEEB',label='巴塘出力')
plt.bar(index_N4,height=SuWaLong_N,width=bar_width,color='#2E8B57',label='苏洼龙出力')
plt.bar(index_N5,height=ChangBo_N,width=bar_width,color='#00FF7F',label='昌波各月出力')
plt.bar(index_N6,height=XuLong_N,width=bar_width,color='#4169E1',label='旭龙各月出力')
plt.bar(index_N7,height=BenZiLan_N,width=bar_width,color='#FA8072',label='奔子栏各月出力')
months=('6月','7月','8月','9月','10月','11月','12月','1月','2月','3月','4月','5月')
plt.legend()
plt.xticks(index_N1+bar_width*2,months)
plt.xlabel("月份")
plt.ylabel("出力/万KW")
plt.title('枯水年优化后梯级水电站各月出力图')
#fig,ax=plt.subplots()
# inits=ax.bar(ind,init_plot,width,color='##ffad00')
#winners=ax.bar(ind+width,winner_plot,width,color='#9b3c38')
# ax.set_xticks(ind+width)
#ax.set_xticklabels(('6月','7月','8月','9月','10月','11月','12月','1月','2月','3月','4月','5月'))
#ax.legend((inits[0],winners[0]),('优化前','优化后'))
plt.show()
plt.figure(2)
for i in range(1,13):
ruku.append(q1[0][i])
chuku.append(qx1[0][i])
X=range(1,13)
plt.plot(X,ruku,color='red',label='入库流量',linewidth=0.5)
plt.legend(loc='upper right')
X1=range(1,13)
plt.plot(X1,chuku,color='black',label='出库流量',linewidth=0.5)
plt.legend(loc='upper right')
plt.title('枯水年叶巴滩流量变化图')
plt.xlim(xmin=1,xmax=12)
plt.xlabel("月份")
plt.ylabel("流量(m3/s)")
plt.xticks([1,2,3,4,5,6,7,8,9,10,11,12],['6月','7月','8月','9月','10月','11月','12月','1月','2月','3月','4月','5月'])
plt.show()
plt.figure(3)
for i in range(1,13):
winner_plot.append(N5[i])
X2=range(1,13)
plt.plot(X2,init_plot,color='red',label='初始各时段出力',linewidth=0.6)
plt.legend(loc='upper right')
plt.plot(X2,winner_plot,color='black',label='优化后各时段出力',linewidth=0.6)
plt.legend(loc='upper right')
plt.title('枯水年优化前后各时段梯级总出力对比图')
plt.xlim(xmin=1,xmax=12)
plt.xlabel("月份")
plt.ylabel("出力/万KW")
plt.xticks([1,2,3,4,5,6,7,8,9,10,11,12],['6月','7月','8月','9月','10月','11月','12月','1月','2月','3月','4月','5月'])
plt.show()
break
else:
continue