-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathVOCevaldetview_validation.m
269 lines (238 loc) · 8.24 KB
/
VOCevaldetview_validation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
function VOCevaldetview_validation
% path of the results
network = 'vgg16';
region_proposal = 'selective_search';
minoverlap = 0.5;
result_dir = '/var/Projects/SubCNN/fast-rcnn/output/objectnet3d/objectnet3d_val';
method = sprintf('%s_fast_rcnn_view_objectnet3d_%s_iter_160000', network, region_proposal);
poolobj = parpool;
opt = globals();
root = opt.root;
% load class name
classes = textread(sprintf('%s/Image_sets/classes.txt', root), '%s');
num_cls = numel(classes);
% load validation set
gtids = textread(sprintf('%s/Image_sets/val.txt', root), '%s');
M = numel(gtids);
% read ground truth
recs = cell(1, M);
count = 0;
for i = 1:M
% read ground truth
filename = sprintf('%s/Annotations/%s.mat', root, gtids{i});
object = load(filename);
recs{i} = object.record;
count = count + numel(object.record.objects);
end
fprintf('load ground truth done, %d objects\n', count);
recalls_det = cell(num_cls, 1);
precisions_det = cell(num_cls, 1);
aps_det = zeros(num_cls, 1);
recalls_view = cell(num_cls, 1);
precisions_view = cell(num_cls, 1);
aps_view = zeros(num_cls, 1);
similarities_view = cell(num_cls, 1);
accuracies_view = cell(num_cls, 1);
avps_view = zeros(num_cls, 1);
avss_view = zeros(num_cls, 1);
errors_view = cell(num_cls, 1);
parfor k = 1:num_cls
cls = classes{k};
% extract ground truth objects
npos = 0;
npos_view = 0;
gt = [];
for i = 1:M
% extract objects of class
clsinds = strmatch(cls, {recs{i}.objects(:).class}, 'exact');
gt(i).BB = cat(1, recs{i}.objects(clsinds).bbox)';
gt(i).det = false(length(clsinds), 1);
gt(i).ignore = false(length(clsinds), 1);
% viewpoint
num = length(clsinds);
gt(i).view = cell(num, 1);
gt(i).azimuth = zeros(num, 1);
gt(i).elevation = zeros(num, 1);
gt(i).rotation = zeros(num, 1);
for j = 1:num
viewpoint = recs{i}.objects(j).viewpoint;
if isempty(viewpoint) == 1
gt(i).ignore(j) = true;
continue;
end
if isfield(viewpoint, 'azimuth') == 0 || isempty(viewpoint.azimuth) == 1
a = viewpoint.azimuth_coarse;
else
a = viewpoint.azimuth;
end
if isfield(viewpoint, 'elevation') == 0 || isempty(viewpoint.elevation) == 1
e = viewpoint.elevation_coarse;
else
e = viewpoint.elevation;
end
theta = viewpoint.theta;
a = a * pi / 180;
e = e * pi / 180;
theta = theta * pi / 180;
gt(i).view{j} = rotation_matrix(a, e, theta);
gt(i).azimuth(j) = a;
gt(i).elevation(j) = e;
gt(i).rotation(j) = theta;
npos_view = npos_view + 1;
end
npos = npos + length(clsinds);
end
% load detections
filename = sprintf('%s/%s/detections_%s.txt', result_dir, method, cls);
fid = fopen(filename, 'r');
C = textscan(fid, '%s %f %f %f %f %f %f %f %f');
fclose(fid);
ids = C{1};
b1 = C{2};
b2 = C{3};
b3 = C{4};
b4 = C{5};
confidence = C{6};
azimuth = C{7};
elevation = C{8};
rotation = C{9};
BB = [b1 b2 b3 b4]';
% sort detections by decreasing confidence
[~, si]=sort(-confidence);
ids = ids(si);
BB = BB(:,si);
azimuth = azimuth(si);
elevation = elevation(si);
rotation = rotation(si);
% assign detections to ground truth objects
nd = length(confidence);
tp = zeros(nd, 1);
fp = zeros(nd, 1);
vp = zeros(nd, 1);
vs = zeros(nd, 1);
ignore = false(nd, 1);
vd = zeros(nd, 3);
tic;
for d = 1:nd
% display progress
if toc > 1
fprintf('%s: pr: compute: %d/%d\n', cls, d, nd);
tic;
end
% find ground truth image
i = find(strcmp(ids{d}, gtids) == 1);
if isempty(i)
error('unrecognized image "%s"', ids{d});
elseif length(i)>1
error('multiple image "%s"', ids{d});
end
% assign detection to ground truth object if any
bb = BB(:,d);
ovmax = -inf;
jmax = -1;
for j = 1:size(gt(i).BB, 2)
bbgt = gt(i).BB(:,j);
bi = [max(bb(1),bbgt(1)) ; max(bb(2),bbgt(2)) ; min(bb(3),bbgt(3)) ; min(bb(4),bbgt(4))];
iw = bi(3) - bi(1) + 1;
ih = bi(4) - bi(2) + 1;
if iw > 0 && ih > 0
% compute overlap as area of intersection / area of union
ua=(bb(3)-bb(1)+1)*(bb(4)-bb(2)+1)+...
(bbgt(3)-bbgt(1)+1)*(bbgt(4)-bbgt(2)+1)-...
iw*ih;
ov= iw * ih / ua;
if ov > ovmax
ovmax = ov;
jmax = j;
end
end
end
% assign detection as true positive/don't care/false positive
if ovmax >= minoverlap
if ~gt(i).det(jmax)
tp(d) = 1; % true positive
gt(i).det(jmax) = true;
% compute viewpoint accuracy
Rgt = gt(i).view{jmax};
if isempty(Rgt) == 0
R = rotation_matrix(azimuth(d), elevation(d), rotation(d));
X = logm(Rgt' * R);
angle = 1/sqrt(2) * norm(X, 'fro');
% viewpoint similarity
vs(d) = (1 + cos(angle)) / 2;
% viewpoint accraucy
if abs(angle) < pi/6
vp(d) = 1;
end
% compute angle errors
da = abs(angdiff(azimuth(d), gt(i).azimuth(jmax)));
de = abs(angdiff(elevation(d), gt(i).elevation(jmax)));
dr = abs(angdiff(rotation(d), gt(i).rotation(jmax)));
vd(d, 1) = da / ( da + de + dr);
vd(d, 2) = de / ( da + de + dr);
vd(d, 3) = dr / ( da + de + dr);
end
else
fp(d) = 1; % false positive (multiple detection)
end
if gt(i).ignore(jmax)
ignore(d) = true;
end
else
fp(d) = 1; % false positive
end
end
% compute precision/recall
fp_det = cumsum(fp);
tp_det = cumsum(tp);
rec_det = tp_det / npos;
prec_det = tp_det ./ (fp_det + tp_det);
ap_det = VOCap(rec_det, prec_det);
aps_det(k) = ap_det;
recalls_det{k} = rec_det;
precisions_det{k} = prec_det;
fprintf('%s, ap: %f\n', cls, ap_det);
% compute precision/recall for view
fp_view = cumsum(fp(~ignore));
tp_view = cumsum(tp(~ignore));
vp_view = cumsum(vp(~ignore));
vs_view = cumsum(vs(~ignore));
rec_view = tp_view / npos_view;
prec_view = tp_view ./ (fp_view + tp_view);
ap_view = VOCap(rec_view, prec_view);
accu_view = vp_view ./ (fp_view + tp_view);
avp_view = VOCap(rec_view, accu_view);
sim_view = vs_view ./ (fp_view + tp_view);
avs_view = VOCap(rec_view, sim_view);
aps_view(k) = ap_view;
avps_view(k) = avp_view;
avss_view(k) = avs_view;
recalls_view{k} = rec_view;
precisions_view{k} = prec_view;
accuracies_view{k} = accu_view;
similarities_view{k} = sim_view;
fprintf('%s, ap view: %f, avp view %f, avs view %f\n', cls, ap_view, avp_view, avs_view);
% keep the view error distribution
vd = vd(tp == 1 & ignore == 0, :);
errors_view{k} = vd;
end
% write to file
fid = fopen(sprintf('views_%s_%d.txt', method, minoverlap*100), 'w');
for i = 1:num_cls
fprintf(fid, '%s %f %f %f %f\n', classes{i}, aps_det(i), aps_view(i), avps_view(i), avss_view(i));
end
fprintf(fid, 'mAP %f %f %f %f\n', mean(aps_det), mean(aps_view), mean(avps_view), mean(avss_view));
fclose(fid);
% save to matfile
matfile = sprintf('views_%s_%d.mat', method, minoverlap*100);
save(matfile, 'recalls_det', 'precisions_det', 'aps_det', ...
'recalls_view', 'precisions_view', 'aps_view', 'avps_view', 'avss_view', 'errors_view', '-v7.3');
delete(poolobj);
function d = angdiff(a, b)
d = a - b;
if d > pi
d = d - 2*pi;
end
if d < -pi
d = d + 2*pi;
end