-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathproject_3d.m
53 lines (44 loc) · 1.37 KB
/
project_3d.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
% --------------------------------------------------------
% ObjectNet3D
% Copyright (c) 2016 CVGL Stanford University
% Licensed under The MIT License [see LICENSE for details]
% Written by Yu Xiang
% --------------------------------------------------------
% project 3D points to 2D according to the camera parameters
function x = project_3d(x3d, a, e, d, f, theta, principal, viewport)
if d == 0
x = [];
return;
end
a = a * pi / 180;
e = e * pi / 180;
theta = theta * pi / 180;
% camera center
C = zeros(3,1);
C(1) = d*cos(e)*sin(a);
C(2) = -d*cos(e)*cos(a);
C(3) = d*sin(e);
% Rotate coordinate system by theta is equal to rotating the model by -theta.
a = -a;
e = -(pi/2-e);
% rotation matrix
Rz = [cos(a) -sin(a) 0; sin(a) cos(a) 0; 0 0 1]; %rotate by a
Rx = [1 0 0; 0 cos(e) -sin(e); 0 sin(e) cos(e)]; %rotate by e
R = Rx*Rz;
% perspective project matrix
% however, we set the viewport to 3000, which makes the camera similar to
% an affine-camera. Exploring a real perspective camera can be a future work.
M = viewport;
P = [M*f 0 0; 0 M*f 0; 0 0 -1] * [R -R*C];
% project
x = P*[x3d ones(size(x3d,1), 1)]';
x(1,:) = x(1,:) ./ x(3,:);
x(2,:) = x(2,:) ./ x(3,:);
x = x(1:2,:);
% rotation matrix 2D
R2d = [cos(theta) -sin(theta); sin(theta) cos(theta)];
x = (R2d * x)';
% x = x';
% transform to image coordinates
x(:,2) = -1 * x(:,2);
x = x + repmat(principal, size(x,1), 1);