|
| 1 | +// Source : https://oj.leetcode.com/problems/triangle/ |
| 2 | +// Inspired by : http://www.jiuzhang.com/solutions/triangle/ |
| 3 | +// Author : Lei Cao |
| 4 | +// Date : 2015-10-12 |
| 5 | + |
| 6 | +/********************************************************************************** |
| 7 | + * |
| 8 | + * Given a triangle, find the minimum path sum from top to bottom. |
| 9 | + * Each step you may move to adjacent numbers on the row below. |
| 10 | + * |
| 11 | + * For example, given the following triangle |
| 12 | + * |
| 13 | + * [ |
| 14 | + * [2], |
| 15 | + * [3,4], |
| 16 | + * [6,5,7], |
| 17 | + * [4,1,8,3] |
| 18 | + * ] |
| 19 | + * |
| 20 | + * The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11). |
| 21 | + * |
| 22 | + * Note: |
| 23 | + * Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle. |
| 24 | + * |
| 25 | + * |
| 26 | + **********************************************************************************/ |
| 27 | + |
| 28 | +package dynamicProgramming.triangle; |
| 29 | + |
| 30 | +import java.util.List; |
| 31 | + |
| 32 | +/** |
| 33 | + * Created by leicao on 12/10/15. |
| 34 | + */ |
| 35 | +public class triangle { |
| 36 | + /** |
| 37 | + * @param triangle: a list of lists of integers. |
| 38 | + * @return: An integer, minimum path sum. |
| 39 | + */ |
| 40 | + public int minimumTotal1(List<List<Integer>> triangle) { |
| 41 | + if (triangle == null) { |
| 42 | + return 0; |
| 43 | + } |
| 44 | + int rows = triangle.size(); |
| 45 | + int[][] matrix = new int[rows][rows]; |
| 46 | + matrix[0][0] = triangle.get(0).get(0); |
| 47 | + for (int i = 1; i < rows; i++) { |
| 48 | + matrix[i][0] = triangle.get(i).get(0) + matrix[i-1][0]; |
| 49 | + } |
| 50 | + |
| 51 | + for (int i = 1; i < rows; i++) { |
| 52 | + matrix[i][i] = triangle.get(i).get(i) + matrix[i - 1][i - 1]; |
| 53 | + } |
| 54 | + |
| 55 | + for (int i = 1; i < rows; i++) { |
| 56 | + for (int j = 1; j < i; j++) { |
| 57 | + matrix[i][j] = Math.min(matrix[i-1][j-1], matrix[i-1][j]) + triangle.get(i).get(j); |
| 58 | + } |
| 59 | + } |
| 60 | + int minimum = matrix[rows - 1][0]; |
| 61 | + for (int i = 1; i < rows; i++) { |
| 62 | + if (matrix[rows - 1][i] < minimum) { |
| 63 | + minimum = matrix[rows - 1][i]; |
| 64 | + } |
| 65 | + } |
| 66 | + return minimum; |
| 67 | + } |
| 68 | + |
| 69 | + public int minimumTotal2(int[][] triangle) { |
| 70 | + if (triangle == null) { |
| 71 | + return 0; |
| 72 | + } |
| 73 | + int rows = triangle.length; |
| 74 | + int[][] matrix = new int[rows][rows]; |
| 75 | + matrix[0][0] = triangle[0][0]; |
| 76 | + for (int i = 1; i < rows; i++) { |
| 77 | + matrix[i][0] = triangle[i][0] + matrix[i-1][0]; |
| 78 | + } |
| 79 | + |
| 80 | + for (int i = 1; i < rows; i++) { |
| 81 | + matrix[i][i] = triangle[i][i] + matrix[i - 1][i - 1]; |
| 82 | + } |
| 83 | + |
| 84 | + for (int i = 1; i < rows; i++) { |
| 85 | + for (int j = 1; j < i; j++) { |
| 86 | + matrix[i][j] = Math.min(matrix[i-1][j-1], matrix[i-1][j]) + triangle[i][j]; |
| 87 | + } |
| 88 | + } |
| 89 | + int minimum = matrix[rows - 1][0]; |
| 90 | + for (int i = 1; i < rows; i++) { |
| 91 | + if (matrix[rows - 1][i] < minimum) { |
| 92 | + minimum = matrix[rows - 1][i]; |
| 93 | + } |
| 94 | + } |
| 95 | + return minimum; |
| 96 | + } |
| 97 | +} |
0 commit comments