-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodels.py
148 lines (116 loc) · 4.67 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn
import torch.nn.functional as F
class LogisticRegression(nn.Module):
def __init__(self, input_dim, nr_classes):
super(LogisticRegression, self).__init__()
self.fc = nn.Linear(input_dim, nr_classes)
def forward(self, x):
return self.fc(x)
class FNNet(nn.Module):
def __init__(self, input_dim, interm_dim, output_dim):
super(FNNet, self).__init__()
self.input_dim = input_dim
self.dp1 = torch.nn.Dropout(0.2)
self.dp2 = torch.nn.Dropout(0.2)
self.fc1 = nn.Linear(input_dim, interm_dim)
self.fc2 = nn.Linear(interm_dim, interm_dim)
self.fc3 = nn.Linear(interm_dim, output_dim)
def forward(self, x):
x = self.embed(x)
x = self.fc3(x)
return x
def embed(self, x):
x = self.dp1(F.relu(self.fc1(x.view(-1, self.input_dim))))
x = self.dp2(F.relu(self.fc2(x)))
return x
class ConvNet(nn.Module):
def __init__(self, output_dim):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 5, 1)
self.dp1 = torch.nn.Dropout(0.5)
self.conv2 = nn.Conv2d(32, 64, 5, 1)
self.dp2 = torch.nn.Dropout(0.5)
self.fc1 = nn.Linear(4 * 4 * 64, 128)
self.dp3 = torch.nn.Dropout(0.5)
self.fc2 = nn.Linear(128, output_dim)
def forward(self, x):
x = self.embed(x)
x = self.fc2(x)
return x
def embed(self, x):
x = F.relu(self.dp1(self.conv1(x)))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.dp2(self.conv2(x)))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 64)
x = F.relu(self.dp3(self.fc1(x)))
return x
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
)
def forward(self, x):
out = F.relu(self.conv1(x))
out = self.conv2(out)
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.conv3 = nn.Conv2d(planes, self.expansion * planes, kernel_size=1, bias=False)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion * planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
)
def forward(self, x):
out = F.relu(self.conv1(x))
out = F.relu(self.conv2(out))
out = self.conv3(out)
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.embed(x)
out = self.linear(out)
return out
def embed(self, x):
out = F.relu(self.conv1(x))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
return out
def ResNet18():
return ResNet(BasicBlock, [2, 2, 2, 2])