@@ -32,7 +32,7 @@ Feasibility problem with:
32
32
Measures: 0
33
33
Transformation backend information:
34
34
Backend type: TranscriptionBackend
35
- Solver name: No optimizer attached.
35
+ Solver: none
36
36
Transformation built and up-to-date: false
37
37
```
38
38
Ultimately, ` model ` will be solved via a transformation backend. By default,
@@ -52,7 +52,7 @@ Feasibility problem with:
52
52
Measures: 0
53
53
Transformation backend information:
54
54
Backend type: TranscriptionBackend
55
- Solver name: No optimizer attached.
55
+ Solver: none
56
56
Transformation built and up-to-date: false
57
57
```
58
58
@@ -72,7 +72,7 @@ Feasibility problem with:
72
72
Measures: 0
73
73
Transformation backend information:
74
74
Backend type: TranscriptionBackend
75
- Solver name : Ipopt
75
+ Solver: Ipopt
76
76
Transformation built and up-to-date: false
77
77
```
78
78
For completeness, the table of currently supported JuMP compatible optimizers
@@ -96,7 +96,7 @@ Feasibility problem with:
96
96
Measures: 0
97
97
Transformation backend information:
98
98
Backend type: TranscriptionBackend
99
- Solver name : Ipopt
99
+ Solver: Ipopt
100
100
Transformation built and up-to-date: false
101
101
```
102
102
@@ -120,11 +120,11 @@ julia> using InfiniteOpt, Ipopt
120
120
julia> backend = TranscriptionBackend(Ipopt.Optimizer)
121
121
A TranscriptionBackend that uses a
122
122
A JuMP Model
123
- Feasibility problem with:
124
- Variables: 0
125
- Model mode: AUTOMATIC
126
- CachingOptimizer state: EMPTY_OPTIMIZER
127
- Solver name: Ipopt
123
+ ├ solver: Ipopt
124
+ ├ objective_sense: FEASIBILITY_SENSE
125
+ ├ num_variables: 0
126
+ ├ num_constraints: 0
127
+ └ Names registered in the model: none
128
128
```
129
129
130
130
We query the underlying transformation backend, transformation model, and transformation
@@ -137,19 +137,19 @@ julia> using InfiniteOpt; model = InfiniteModel();
137
137
julia> tbackend = transformation_backend(model)
138
138
A TranscriptionBackend that uses a
139
139
A JuMP Model
140
- Feasibility problem with:
141
- Variables: 0
142
- Model mode: AUTOMATIC
143
- CachingOptimizer state: NO_OPTIMIZER
144
- Solver name: No optimizer attached.
140
+ ├ solver: none
141
+ ├ objective_sense: FEASIBILITY_SENSE
142
+ ├ num_variables: 0
143
+ ├ num_constraints: 0
144
+ └ Names registered in the model: none
145
145
146
146
julia> tmodel = transformation_model(model)
147
147
A JuMP Model
148
- Feasibility problem with:
149
- Variables: 0
150
- Model mode: AUTOMATIC
151
- CachingOptimizer state: NO_OPTIMIZER
152
- Solver name: No optimizer attached.
148
+ ├ solver: none
149
+ ├ objective_sense: FEASIBILITY_SENSE
150
+ ├ num_variables: 0
151
+ ├ num_constraints: 0
152
+ └ Names registered in the model: none
153
153
154
154
julia> data = transformation_data(model);
155
155
```
@@ -163,11 +163,11 @@ julia> set_transformation_backend(model, TranscriptionBackend(Ipopt.Optimizer))
163
163
julia> tbackend = transformation_backend(model)
164
164
A TranscriptionBackend that uses a
165
165
A JuMP Model
166
- Feasibility problem with:
167
- Variables: 0
168
- Model mode: AUTOMATIC
169
- CachingOptimizer state: EMPTY_OPTIMIZER
170
- Solver name: Ipopt
166
+ ├ solver: Ipopt
167
+ ├ objective_sense: FEASIBILITY_SENSE
168
+ ├ num_variables: 0
169
+ ├ num_constraints: 0
170
+ └ Names registered in the model: none
171
171
```
172
172
Again, since ` TranscriptionBackend ` is the default, the following models are equivalent:
173
173
``` jldoctest
@@ -187,7 +187,7 @@ Feasibility problem with:
187
187
Measures: 0
188
188
Transformation backend information:
189
189
Backend type: TranscriptionBackend
190
- Solver name : Ipopt
190
+ Solver: Ipopt
191
191
Transformation built and up-to-date: false
192
192
```
193
193
0 commit comments