-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrv.py
508 lines (436 loc) · 24.3 KB
/
crv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
from os import listdir, makedirs
from os.path import isfile, join, isdir
from datetime import datetime
from pandas import DataFrame, read_csv
from xml.etree.ElementTree import parse
from base64 import standard_b64decode
from struct import unpack
from collections import namedtuple
import subprocess
from sys import stdout
# smart progress bar
def show_progress(label, width, percentage):
progress = '['
for i in range(0, width):
if i / width < percentage:
progress += '#'
else:
progress += ' '
progress += '] {0:.1%}'.format(percentage)
print('\r' + label + progress, end='')
stdout.flush()
def load_compounds_list(file_name):
compounds_list = []
with open(file_name) as file:
for line in file:
components = line[:-1].split(';')
name = components[0]
smile = components[1]
compound = {'name': name, 'smile': smile}
compounds_list.append(compound)
print('Compounds found: {0}'.format(len(compounds_list)))
return compounds_list
def select_database(root_folder):
database_names = [f for f in listdir(root_folder) if isdir(join(root_folder, f))]
index = 1
print('Available databases:')
for name in database_names:
print('{0}. {1}'.format(index, name))
index += 1
index = int(input('Select database: '))
file_name = join(root_folder, database_names[index - 1], 'compounds-list.txt')
if not isfile(file_name):
print('Cannot find compounds-list.txt in selected database.')
exit()
return database_names[index-1]
def get_compounds_list_file_name(database_folder_name):
file_name = input('Enter compounds list file name (or press ENTER to use default compounds-list.txt from database): ')
if file_name == '':
file_name = join(database_folder_name, 'compounds-list.txt')
return file_name
def construct_database(minimal_intensity: float = 0.0):
database_root_folder = 'databases'
database_name = select_database(database_root_folder)
database_folder_name = join(database_root_folder, database_name)
compounds_list_file_name = get_compounds_list_file_name(database_folder_name)
compounds = load_compounds_list(compounds_list_file_name)
missing_compound_files = []
for compound in compounds:
compound_file_name = join(database_root_folder, database_name, compound['name'])
if not isfile(compound_file_name):
missing_compound_files.append(compound['name'])
if len(missing_compound_files) != 0:
print('Cannot find energy files for {0} compounds: '.format(len(missing_compound_files)))
for name in missing_compound_files:
print('- {0}'.format(name))
print('You can either provide proper energy files or delete them from compounds list.')
exit()
session_root_folder = 'sessions'
time = datetime.now()
session_name = '{0}-{1}-{2}_{3}-{4}-{5}'.format(time.year, time.month, time.day, time.hour, time.minute, time.second)
session_folder_name = join(session_root_folder, session_name)
makedirs(session_folder_name)
msp_file_name = join(session_folder_name, 'energies.msp')
if minimal_intensity != 0.0:
msp_file_name = msp_file_name.replace('energies.msp', 'energies-{0}.msp'.format(minimal_intensity))
msp_file = open(msp_file_name, 'w')
compound_index = 0
for compound in compounds:
energy_file = open(join(database_folder_name, compound['name']))
energies = []
smile_started = False
for line in energy_file.readlines():
line = line[:-1]
if line == '':
smile_started = True
continue
if smile_started:
components = line.split(' ')
fragment_index = int(components[0])
smile = components[2]
for energy in energies:
if fragment_index < len(energy['fragments']):
energy['fragments'][fragment_index]['smile'] = smile
else:
if 'energy' in line:
energy = {'name': line.replace('en', 'En'), 'fragments': []}
energies.append(energy)
else:
components = line.split(' ')
fragment = {'mass': float(components[0]), 'intensity': float(components[1]), 'smile': ''}
if minimal_intensity != 0.0:
if fragment['intensity'] < minimal_intensity:
continue
energies[-1]['fragments'].append(fragment)
for energy in energies:
msp_file.write('Name: {0}\n'.format(compound['name']))
# msp_file.write('ID: {0}\n'.format(compound_index))
msp_file.write('ID: {0}\n'.format(compound['name']))
msp_file.write('Comment: {0}\n'.format(energy['name']))
msp_file.write('Num peaks: {0}\n'.format(len(energy['fragments'])))
for fragment in energy['fragments']:
msp_file.write('{0} {1}\n'.format(fragment['mass'], fragment['intensity']))
msp_file.write('\n')
compound['energies'] = energies
compound_index += 1
msp_file.close()
candidates_file_name = join(session_folder_name, 'candidates.txt')
if minimal_intensity != 0.0:
candidates_file_name = candidates_file_name.replace('candidates.txt', 'candidates-{0}.txt'.format(minimal_intensity))
candidates_file = open(candidates_file_name, 'w')
compound_index = 0
for compound in compounds:
# candidates_file.write('{0} {1} {2}\n'.format(compound_index, compound['smile'], msp_file_name))
candidates_file.write('{0} {1} {2}\n'.format(compound['name'], compound['smile'], msp_file_name))
compound_index += 1
candidates_file.close()
training_list_file_name = join(session_folder_name, 'training-list.txt')
if minimal_intensity != 0.0:
training_list_file_name = training_list_file_name.replace('training-list.txt', 'training-list-{0}.txt'.format(minimal_intensity))
training_list_file = open(training_list_file_name, 'w')
training_list_file.write('{0}\n'.format(len(compounds)))
for compound in compounds:
training_list_file.write('{0} {1} {2}\n'.format(compound['name'], compound['smile'], 0))
training_list_file.close()
return session_folder_name, compounds, candidates_file_name
def filter_fragments(sample_energies, database_energies):
if len(sample_energies) == 0:
return sample_energies
database_keys = ['Energy0', 'Energy1', 'Energy2']
sample_keys = ['10', '20', '40']
Spectrum = namedtuple('Spectrum', 'id mz energy masses intensities')
Fragment = namedtuple('Fragment', 'mass intensity')
delta_mass = 0.001
filtered_energies = []
methods = ['filter peaks that are close to the same from database', 'get 80% of intensity']
method = 'get 80% of intensity'
if method == 'filter peaks that are close to the same from database':
for sample_energy in sample_energies:
filtered_energy = {}
for i in range(0, len(sample_energy)):
sample_spectrum = sample_energy[sample_keys[i]]
database_fragments = [e for e in database_energies if e['name'] == database_keys[i]][0]['fragments']
nearest_database_peaks = []
for sample_peak_index in range(0, len(sample_spectrum.masses)):
nearest_database_peak = database_fragments[0]
sample_peak = Fragment(mass=sample_spectrum.masses[sample_peak_index], intensity=sample_spectrum.intensities[sample_peak_index])
for database_peak in database_fragments:
if abs(database_peak['mass'] - sample_peak.mass) < abs(nearest_database_peak['mass'] - sample_peak.mass):
nearest_database_peak = database_peak
if abs(nearest_database_peak['mass'] - sample_peak.mass) < delta_mass:
nearest_database_peaks.append({'database': nearest_database_peak, 'sample': sample_peak})
filtered_fragments = []
for database_peak in database_fragments:
nearest_peaks = []
for peak in nearest_database_peaks:
if peak['database'] == database_peak:
nearest_peaks.append(peak['sample'])
if len(nearest_peaks) == 0:
continue
nearest_peak = nearest_peaks[0]
for peak in nearest_peaks:
if abs(peak.mass - database_peak['mass']) < abs(nearest_peak.mass - database_peak['mass']):
nearest_peak = peak
filtered_fragments.append(nearest_peak)
masses = [f.mass for f in filtered_fragments]
intensities = [f.intensity for f in filtered_fragments]
filtered_energy[sample_keys[i]] = Spectrum(id=sample_spectrum.id, mz=sample_spectrum.mz, energy=sample_spectrum.energy, masses=masses, intensities=intensities)
filtered_energies.append(filtered_energy)
else:
for sample_energy in sample_energies:
filtered_energy = {}
for i in range(0, len(sample_energy)):
sample_spectrum = sample_energy[sample_keys[i]]
sorted_fragments = []
for fragment_index in range(0, len(sample_spectrum.masses)):
sorted_fragments.append(Fragment(mass=sample_spectrum.masses[fragment_index], intensity=sample_spectrum.intensities[fragment_index]))
sorted_fragments = sorted(sorted_fragments, key=lambda x: x.intensity, reverse=True)
total_intensity = 0.0
for fragment in sorted_fragments:
total_intensity += fragment.intensity
target_intensity = 0.8 * total_intensity
accumulated_intensity = 0.0
filtered_fragments = []
for fragment in sorted_fragments:
filtered_fragments.append(fragment)
accumulated_intensity += fragment.intensity
if accumulated_intensity >= target_intensity:
break
masses = [f.mass for f in filtered_fragments]
intensities = [f.intensity for f in filtered_fragments]
filtered_energy[sample_keys[i]] = Spectrum(id=sample_spectrum.id, mz=sample_spectrum.mz,
energy=sample_spectrum.energy, masses=masses,
intensities=intensities)
filtered_energies.append(filtered_energy)
return filtered_energies
def parse_sample_data(xml_file_name, csv_file_name, compounds_without_ms2_spectra_file_name, spectra_file_name, candidates_list):
ionization_cases_list_file_name = 'ionization-cases-list.ssv'
ionization_cases_list = read_csv(ionization_cases_list_file_name, index_col=False, sep=';')
Spectrum = namedtuple('Spectrum', 'id mz energy masses intensities')
print('Parsing file: {0}'.format(xml_file_name))
tree = parse(xml_file_name)
root = tree.getroot()
spectrumList = root.find('spectrumList')
spectrum_list = spectrumList.findall('spectrum')
print('Spectra found: {0}'.format(len(spectrum_list)))
spectrum_with_precursors_list = []
for spectrum in spectrum_list:
desc = spectrum.find('spectrumDesc')
if desc.find('precursorList') is not None:
spectrum_with_precursors_list.append(spectrum)
print('Spectra with precursors found: {0}'.format(len(spectrum_with_precursors_list)))
spectrum_data_list = []
for spectrum in spectrum_with_precursors_list:
id = spectrum.attrib['id']
precursorList = spectrum.find('spectrumDesc').find('precursorList')
precursor_list = precursorList.findall('precursor')
if len(precursor_list) > 1:
print('WARNING: spectrum with {0} precursors found: {1}'.format(len(precursor_list), id))
for precursor in precursor_list:
mz = 0.0
cvParam_list = precursor.find('ionSelection').findall('cvParam')
for cvParam in cvParam_list:
if cvParam.attrib['name'] == 'MassToChargeRatio':
mz = float(cvParam.attrib['value'])
energy = 0
cvParam_list = precursor.find('activation').findall('cvParam')
for cvParam in cvParam_list:
if cvParam.attrib['name'] == 'CollisionEnergy':
energy = cvParam.attrib['value']
mzArrayBinary = spectrum.find('mzArrayBinary').find('data')
mzArrayBinary_data = mzArrayBinary.text
mzArrayBinary_decoded = standard_b64decode(mzArrayBinary_data)
mzArrayBinary_count = len(mzArrayBinary_decoded) // 8
mzArray = unpack('<{0}d'.format(mzArrayBinary_count), mzArrayBinary_decoded)
intenArrayBinary = spectrum.find('intenArrayBinary').find('data')
intenArrayBinary_data = intenArrayBinary.text
intenArrayBinary_decoded = standard_b64decode(intenArrayBinary_data)
intenArray = unpack('<{0}f'.format(mzArrayBinary_count), intenArrayBinary_decoded)
masses = []
intensities = []
for i in range(0, len(mzArray)):
if mzArray[i] < 1.00001 * mz:
masses.append(mzArray[i])
intensities.append(intenArray[i])
spectrum_data_list.append(Spectrum(id=id, mz=mz, energy=energy, masses=masses, intensities=intensities))
print('Processing compounds from file: {0}'.format(csv_file_name))
all_compounds_list = read_csv(csv_file_name, header=2, index_col=False, usecols=['Name', 'Mass', 'RT', 'Area', 'Score', 'Precursor'])
Compound = namedtuple('Compound', 'name mass rt area score precursor matches')
compound_without_spectra_file = open(compounds_without_ms2_spectra_file_name, 'w')
compound_without_spectra_file.write('Name;Mass;RT;Area;Score;Precursor;PMD\n')
spectra_file = open(spectra_file_name, 'w')
compounds_list = []
for i in range(0, len(all_compounds_list)):
precursor = all_compounds_list['Precursor'][i]
mass = all_compounds_list['Mass'][i]
matches = []
for spectrum in spectrum_data_list:
for ionization_case_index in range(0, len(ionization_cases_list)):
if abs(mass + ionization_cases_list['DeltaMass'][ionization_case_index] - spectrum.mz) <= mass / 100000.0:
if spectrum.energy == '10':
matches.append({'10': spectrum})
else:
matches[-1][spectrum.energy] = spectrum
name = all_compounds_list['Name'][i]
mass = all_compounds_list['Mass'][i]
rt = all_compounds_list['RT'][i]
area = all_compounds_list['Area'][i]
score = all_compounds_list['Score'][i]
# try to filter fragments
for candidate in candidates_list:
if candidate['name'] == name:
matches = filter_fragments(matches, candidate['energies'])
compound = Compound(name=name, mass=mass, rt=rt, area=area, score=score, precursor=precursor, matches=matches)
if len(matches) == 0:
print('-- compound without spectra found: {0}'.format(name))
compound_without_spectra_file.write('{0};{1};{2};{3};{4};{5};{6}\n'.format(name, mass, rt, area, score, precursor, abs(precursor-mass)))
else:
print(compound)
for match in compound.matches:
id = match['10'].id
for energy in ['10', '20', '40']:
comment = 'Energy'
if energy == '10': comment += '0'
elif energy == '20': comment += '1'
else: comment += '2'
if not energy in match:
continue
spectra_file.write('Name: {0} {1}\n'.format(match[energy].mz, compound.name))
spectra_file.write('ID: {0}\n'.format(id))
spectra_file.write('Comment: {0}\n'.format(comment))
spectra_file.write('Num peaks: {0}\n'.format(len(match[energy].masses)))
for index in range(0, len(match[energy].masses)):
spectra_file.write('{0} {1}\n'.format(match[energy].masses[index], match[energy].intensities[index]))
spectra_file.write('\n')
compounds_list.append(compound)
compound_without_spectra_file.close()
spectra_file.close()
print('Compounds list constructed.')
print('Spectra saved to \'{0}\'.'.format(spectra_file_name))
print('Compounds without MS2 spectra saved to \'{0}\'.'.format(compounds_without_ms2_spectra_file_name))
return compounds_list
def receive_cfm_answers(compounds_list, candidates_list, candidates_file_name, spectra_file_name):
label = 'CFM-ID analysis processing: '
show_progress(label, 40, 0.0)
command = 'cfm-id/cfm-id-precomputed.exe {0} {1} {2} -1 10 0.0005'# DotProduct'
cfm_answers = []
progress = 0.0
for compound in compounds_list:
cfm_answer = {'name': compound.name, 'compound_id': '', 'alternatives': {}}
for match in compound.matches:
id = match['10'].id
current_command = command.format(spectra_file_name, id, candidates_file_name)
cfm = subprocess.Popen(current_command.split(), stdout=subprocess.PIPE)
output, error = cfm.communicate()
lines = output.decode('utf-8').split('\n')
first_answer_index = 0
for i in range(0, len(lines)):
if 'ID: ' in lines[i]:
first_answer_index = i+1
break
answer_lines = lines[first_answer_index:-1]
for line in answer_lines:
components = line.split(' ')
candidate_name = components[2]
candidate_score = float(components[1])
if candidate_name == compound.name:
cfm_answer['compound_id'] = candidate_name
if not candidate_name in cfm_answer['alternatives']:
cfm_answer['alternatives'][candidate_name] = []
cfm_answer['alternatives'][candidate_name].append(candidate_score)
if not compound.name in cfm_answer['alternatives']:
cfm_answer['matches_ratio'] = 0.0
else:
cfm_answer['matches_ratio'] = len(cfm_answer['alternatives'][compound.name]) / len(compound.matches)
cfm_answers.append(cfm_answer)
progress += 1 / len(compounds_list)
show_progress(label, 40, progress)
print()
return cfm_answers
def write_approved_compounds_list(cfm_answers, file_name, compounds_list, candidates_list):
possible_score_threshold = 0.05
approved_score_threshold = 0.35
file = open(file_name, 'w')
file.write('Name;Mass;RT;Area;Score;Precursor;Average MS2 score;Matches ratio;Nearest alternative;Nearest alternative MS2 score;Fragments\n')
for answer in cfm_answers:
if answer['matches_ratio'] == 0.0:
continue
candidate_name = answer['name']
average_ms2_score = 0.0
for score in answer['alternatives'][candidate_name]:
average_ms2_score += score
average_ms2_score /= len(answer['alternatives'][candidate_name])
if average_ms2_score < possible_score_threshold:
continue
ms2_ratio = answer['matches_ratio']
nearest_alternative_name = ''
nearest_alternative_score = 0.0
for alternative in answer['alternatives']:
if alternative == candidate_name:
continue
current_alternative_average_score = 0.0
for score in answer['alternatives'][alternative]:
current_alternative_average_score += score
current_alternative_average_score /= len(answer['alternatives'][alternative])
if abs(average_ms2_score - current_alternative_average_score) < abs(average_ms2_score - nearest_alternative_score):
nearest_alternative_name = alternative
nearest_alternative_score = current_alternative_average_score
for compound in compounds_list:
if compound.name == candidate_name:
file.write('{0};{1};{2};{3};{4};{5};{6};{7};{8};{9}'.format(compound.name, compound.mass, compound.rt,
compound.area, compound.score,
compound.precursor, average_ms2_score,
ms2_ratio, nearest_alternative_name, nearest_alternative_score))
if average_ms2_score > approved_score_threshold:
file.write(';\n')
else:
for candidate in candidates_list:
if candidate['name'] == candidate_name:
corresponding_smiles = []
for match in compound.matches:
# TODO: refactor this shit!
compound_keys = ['10', '20', '40']
for energy_index in range(0, 3):
if not compound_keys[energy_index] in match:
continue
compound_energy = match[compound_keys[energy_index]]
if len(compound_energy) == 0:
continue
candidate_energy = candidate['energies'][energy_index]
for mass in compound_energy.masses:
for fragment in candidate_energy['fragments']:
if abs(mass - fragment['mass']) < 10.00:
smile = fragment['smile']
if not smile in corresponding_smiles:
corresponding_smiles.append(smile)
for smile in corresponding_smiles:
file.write(';{0}'.format(smile))
break
file.write('\n')
break
print('Approved compounds list saved to \'{0}\'.'.format(file_name))
if __name__ == '__main__':
session_folder_name, candidates_list, candidates_file_name = construct_database(0.0001)
data_folder_name = input('Enter data folder name: ')
sample_folder_names = [f for f in listdir(data_folder_name) if isdir(join(data_folder_name, f))]
print('Folders with sample data found:')
for name in sample_folder_names:
print('- {0}'.format(name))
makedirs(join(session_folder_name, 'results'))
for sample_folder_name in sample_folder_names:
print('Processing sample: {0}'.format(sample_folder_name))
current_sample_data_folder_name = join(data_folder_name, sample_folder_name)
current_sample_session_folder_name = join(session_folder_name, 'results', sample_folder_name)
makedirs(current_sample_session_folder_name)
compounds_without_ms2_spectra_file_name = join(current_sample_session_folder_name, 'compounds-without-ms2-spectra.ssv')
spectra_file_name = join(current_sample_session_folder_name, 'spectra.msp')
xml_file_name = [f for f in listdir(current_sample_data_folder_name) if '.mzdata.xml' in f][0]
xml_file_name = join(current_sample_data_folder_name, xml_file_name)
all_compounds_file_name = [f for f in listdir(current_sample_data_folder_name) if '.csv' in f][0]
all_compounds_file_name = join(current_sample_data_folder_name, all_compounds_file_name)
compounds_list = parse_sample_data(xml_file_name, all_compounds_file_name, compounds_without_ms2_spectra_file_name, spectra_file_name, candidates_list)
cfm_answers = receive_cfm_answers(compounds_list, candidates_list, candidates_file_name, spectra_file_name)
print(cfm_answers)
approved_compounds_list_file_name = join(current_sample_session_folder_name, 'approved-compounds-list.ssv')
write_approved_compounds_list(cfm_answers, approved_compounds_list_file_name, compounds_list, candidates_list)
print('------------------------------')