-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
492 lines (404 loc) · 22.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import gc
import json
import math
import operator
import random
import time
import os
from argparse import ArgumentParser
from collections import defaultdict
from functools import wraps
from pathlib import Path
from random import sample
import numpy as np
import pandas as pd
import pytorch_warmup as warmup
import scipy
import torch
from model import SPC_PLM
from task import Task, define_dataset_config, define_tasks_config
from torch import optim
from tqdm import tqdm
from utils import stream_redirect_tqdm
from sklearn.metrics import confusion_matrix, classification_report
device_count = torch.cuda.device_count()
def seed_everything(seed=2023):
print(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
os.environ['PYTHONHASHSEED'] = str(seed)
if torch.cuda.is_available():
print('Running on GPU')
print('device_count: ', device_count)
device = torch.device("cuda")
else:
device = torch.device("cpu")
print('Running on CPU')
def get_parameter_number(model):
total_num = sum(p.numel() for p in model.parameters())
trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad)
return {'Total parameters': total_num, 'Trainable parameters': trainable_num}
def split_n(chunk_length, sequence):
if type(sequence) == dict:
key_splits = {}
for key, subseq in sequence.items():
key_splits[key] = split_n(chunk_length, subseq)
splits_count = len(next(iter(key_splits.values())))
splits = []
for i in range(splits_count):
s = {}
for key, subseq in key_splits.items():
s[key] = subseq[i]
splits.append(s)
return splits
else:
splits = []
splits_count = math.ceil(len(sequence) / chunk_length)
for i in range(splits_count):
splits.append(sequence[i * chunk_length:min(len(sequence), (i + 1) * chunk_length)])
return splits
def retry_with_batchsize_halving(train_task=None):
def inner(train_fn):
@wraps(train_fn)
def wrapper(*args, **kwargs):
retry = True
task = train_task or kwargs.get("task")
input_data = kwargs["input_data"]
batch_size = len(input_data)
label = kwargs.get("label", [0] * batch_size)
optimizer = kwargs["optimizer"]
while retry and batch_size > 0:
microbatches = split_n(batch_size, input_data)
microlabels = split_n(batch_size, label)
for microbatch, microlabel in zip(microbatches, microlabels):
try:
new_kwargs = dict(kwargs, input_data=microbatch, label=microlabel)
train_fn(*args, **new_kwargs)
except RuntimeError as e:
print(f"{e} Error in current task {task} with batch size {batch_size}. Retrying...")
batch_size //= 2
optimizer.zero_grad(set_to_none=True)
break
finally:
gc.collect()
torch.cuda.empty_cache()
else:
retry = False
if retry:
print(f"Skipping {task} batch... (size: {batch_size})")
return wrapper
return inner
@retry_with_batchsize_halving()
def train_minibatch(input_data, task, label, model, **kwargs):
output, loss = model(input_data, label, task)[:2]
train_losses[task.name].append(loss.item())
loss.backward()
del output
def main():
parser = ArgumentParser()
parser.add_argument("--status", type=str, default="train", choices=["train", "test"])
parser.add_argument("--from_checkpoint", type=str, default=None)
parser.add_argument("--epochs", type=int, default=20)
parser.add_argument('--patience', type=int, default=5, help='early stop')
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--fine_tune_task", type=Task, nargs='+', default=list([Task.tweeteval_stance]), choices=list(Task),
required=False, help="claire, glue_sts_b, isear_v3, tweeteval_stance, list(['tweeteval_offensive','tweeteval_hate'])")
parser.add_argument("--dataset_percentage", type=float, default=1.0)
parser.add_argument("--optimizer_name", default="Adamax", type=str, help="Adam, Adamax, AdamW")
parser.add_argument("--lr", type=float, default=5e-5, help="lr: 5e-5, 1e-5")
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--warmup_ratio", type=float, default=0.1, help="warmup_ratio: 0.1, 0.06")
parser.add_argument("--bs", type=int, default=128)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--max_length", type=int, default=128)
parser.add_argument("--pooling_method", type=str, default="cls", help="pooling_method: cls, avg, cnn")
parser.add_argument("--pretrained_model_path", type=str, default="./ptms/roberta-base", help="roberta-base") # "bert-base-chinese"
parser.add_argument("--output_hidden_states_flag", action="store_true", default=False, help="flag of output_hidden_states")
parser.add_argument("--output_dir", type=str, default="./outputs/demo-v1/")
parser.add_argument("--var_weight", type=float, default=0.0)
parser.add_argument("--clu_weight", type=float, default=0.0)
parser.add_argument("--normalize_flag", action="store_true", default=False, help="flag of normalize")
parser.add_argument("--batch_sampling_flag", action="store_true", default=False, help="flag of sampling batch data")
parser.add_argument("--task_type", type=str, default="cls", help="cls, res, multi")
parser.add_argument("--pair_flag", action="store_true", default=False, help="flag of pair sentences")
parser.add_argument("--tokenizer_add_e_flag", action="store_true", default=False, help="flag of add special_tokens e for claire")
parser.add_argument("--save_model_flag", action="store_true", default=False, help="flag of save model checkpoint")
parser.add_argument("--module_print_flag", action="store_true", default=True, help="flag of module structure print")
args = parser.parse_args()
print(args)
seed_everything(args.seed)
datasets_config = define_dataset_config(fine_tune_task=args.fine_tune_task, batch_size=args.bs, pair_flag=args.pair_flag)
tasks_config = define_tasks_config(datasets_config, dataset_percentage=args.dataset_percentage)
task_actions = []
task2num = {}
for task in iter(Task):
if task not in datasets_config.keys():
continue
train_loader = tasks_config[task]["train_loader"]
task_actions.extend([task] * len(train_loader))
task2num[task.name] = len(train_loader)
print("task2num: ", task2num)
with open('./data/task2label.json', 'r', encoding='utf-8') as f:
task2label = json.load(f)
model = SPC_PLM(pretrained_model_path=args.pretrained_model_path,
tasks_config=tasks_config,
max_length=args.max_length,
dropout=args.dropout,
var_weight=args.var_weight,
clu_weight=args.clu_weight,
pooling_method=args.pooling_method,
task_type=args.task_type,
output_hidden_states=args.output_hidden_states_flag,
module_print_flag=args.module_print_flag,
normalize_flag=args.normalize_flag,
tokenizer_add_e_flag=args.tokenizer_add_e_flag)
model.to(device)
for name, param in model.named_parameters():
print(name, ":", param.size(), param.requires_grad)
print(get_parameter_number(model))
params_opt = filter(lambda p: p.requires_grad, model.parameters())
if args.optimizer_name == "Adamax":
optimizer = optim.Adamax(params=params_opt, lr=args.lr, weight_decay=args.weight_decay)
elif args.optimizer_name == "AdamW":
optimizer = optim.AdamW(params=params_opt, lr=args.lr, weight_decay=args.weight_decay)
else:
optimizer = optim.Adam(params=params_opt, lr=args.lr, weight_decay=args.weight_decay)
initial_epoch = 0
training_start = int(time.time())
num_epochs = args.epochs
if args.from_checkpoint:
print("Loading from checkpoint")
checkpoint = torch.load(args.from_checkpoint, map_location=device)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
initial_epoch = checkpoint['epoch'] + 1
training_start = checkpoint["training_start"]
warmup_scheduler = None
lr_scheduler = None
else:
print("Starting training from scratch")
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda step: 1.0)
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period=max(1, int(sum(task2num.values()) * num_epochs * args.warmup_ratio))) # 10
if args.from_checkpoint:
num_epochs += initial_epoch - 1
print(f"------------------ training-start: {training_start} --------------------------)")
print("333333\n")
if args.from_checkpoint and args.status == "test":
results_folder = Path(f"{args.output_dir.rstrip('/')}_{training_start}/test")
evaluate_task(model, checkpoint['epoch'], tasks_config, datasets_config, results_folder, stream_redirect_tqdm(), eval_loader="test_loader",
task2label=task2label)
print("test is finished| done")
exit(0)
loss_pre = None
patience = 0
for epoch in range(initial_epoch, num_epochs):
print("epoch: ", epoch)
if args.batch_sampling_flag:
tasks_config = define_tasks_config(datasets_config, dataset_percentage=args.dataset_percentage, seed=args.seed)
task_actions = []
for task in iter(Task):
if task not in datasets_config.keys():
continue
train_loader = tasks_config[task]["train_loader"]
task_actions.extend([task] * len(train_loader))
with stream_redirect_tqdm() as orig_stdout:
epoch_bar = tqdm(sample(task_actions, len(task_actions)), file=orig_stdout)
model.train()
global train_losses
train_losses = defaultdict(list)
for task_action in epoch_bar:
tasks_config_t = tasks_config[task_action]
if args.fine_tune_task is not None:
print("epoch: {}, task_action: {}".format(epoch, task_action))
train_loader = tasks_config_t["train_loader"]
epoch_bar.set_description(f"current task: {task_action.name} in epoch:{epoch}")
data = next(iter(train_loader))
optimizer.zero_grad(set_to_none=True)
data_columns = [col for col in tasks_config_t["columns"] if col != "label"]
input_data = list(zip(*(data[col] for col in data_columns)))
if len(data_columns) == 1: input_data = list(map(operator.itemgetter(0), input_data))
label = data["label"]
if tasks_config_t['task_type'] == "res":
label = [e.to(torch.float32) if e.dtype == torch.float64 else e for e in label]
label = [e.to(device) for e in label]
else:
if label.dtype == torch.float64: label = label.to(torch.float32)
label = label.to(device)
train_minibatch(input_data=input_data,
task=task_action,
label=label,
model=model,
optimizer=optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
optimizer.step()
if warmup_scheduler:
lr_scheduler.step()
warmup_scheduler.dampen()
train_losses = dict((k, sum(v) / len(v)) for k, v in train_losses.items())
print("train loss: ", sum(train_losses.values()) / len(train_losses), train_losses)
del train_losses
results_folder = Path(f"{args.output_dir.rstrip('/')}_{training_start}")
models_path = results_folder / "saved_models"
models_path.mkdir(parents=True, exist_ok=True)
eval_loss, _ = evaluate_task(model, epoch, tasks_config, datasets_config, results_folder, orig_stdout, eval_loader="dev_loader",
task2label=task2label)
_, test_result_df = evaluate_task(model, epoch, tasks_config, datasets_config, results_folder, orig_stdout, eval_loader="test_loader",
task2label=task2label)
if loss_pre is None or eval_loss < loss_pre:
patience = 0
loss_pre = eval_loss
test_result_df.to_csv(str(results_folder / f"test_best_results.csv"), mode='w', index_label='Epoch')
if args.save_model_flag:
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'training_start': training_start
}, str(models_path / f'epoch.pkl'))
else:
patience += 1
if patience >= args.patience:
print('Early stoping. current patience: {}, current epoch: {} '.format(patience, epoch - patience))
break
else:
print('Current patience: {}, current epoch: {} '.format(patience, epoch - patience))
def evaluate_task(model, epoch, tasks_config, datasets_config, results_folder, orig_stdout, eval_loader="dev_loader", task2label=None):
model.eval()
val_results = {}
pred_results = {}
task_columns = ["id", "sentence2", "sentence1", "label", "pred", "label_id", "pred_id"]
with torch.no_grad():
task_bar = tqdm([task for task in Task], file=orig_stdout)
loss_items = defaultdict(list)
for task in task_bar:
if task not in datasets_config.keys(): continue
print("epoch: {}, eval_loader: {}, task: {}".format(epoch, eval_loader, task))
task_bar.set_description(task.name)
task_config_t = tasks_config[task]
val_loader = task_config_t[eval_loader]
id2label = dict((k, v) for k, v in enumerate(task_config_t['class_names']))
if task_config_t['task_type'] == "res":
task_predicted_labels = [torch.empty(0, device=device)] * len(task_config_t['class_names'])
task_labels = [torch.empty(0, device=device)] * len(task_config_t['class_names'])
else:
task_predicted_labels = torch.empty(0, device=device)
task_labels = torch.empty(0, device=device)
task_data = defaultdict(list)
for val_data in val_loader:
data_columns = [col for col in task_config_t["columns"] if col != "label"]
input_data = list(zip(*(val_data[col] for col in data_columns)))
if task_config_t['task_type'] == "res":
# For regression
label = val_data["label"]
label = [e.to(device) for e in label]
if len(data_columns) == 1:
input_data = list(map(operator.itemgetter(0), input_data))
model_output = model(input_data, label, task)
predicted_label = model_output[0]
loss_items[task.name].append(model_output[1].item())
for i in range(len(label)):
task_predicted_labels[i] = torch.hstack((task_predicted_labels[i], predicted_label[:, i].view(-1)))
task_labels[i] = torch.hstack((task_labels[i], label[i]))
for k in ["id", "sentence1", "sentence2"]:
task_data[k].extend(val_data[k])
else:
# For classiciation
label = val_data["label"].to(device)
if len(data_columns) == 1:
input_data = list(map(operator.itemgetter(0), input_data))
model_output = model(input_data, label, task)
if task_config_t['num_classes'] > 1:
predicted_label = torch.argmax(model_output[0], -1)
else:
predicted_label = model_output[0]
loss_items[task.name].append(model_output[1].item())
task_predicted_labels = torch.hstack((task_predicted_labels, predicted_label.view(-1)))
task_labels = torch.hstack((task_labels, label))
for k in ["id", "sentence1", "sentence2"]: task_data[k].extend(val_data[k])
metrics = datasets_config[task].metrics
w_f1_result = None
for metric in metrics:
if metric.__name__ in ["f1_score"]:
metric_result = metric(task_labels.cpu(), task_predicted_labels.cpu(), average='macro')
w_f1_result = metric(task_labels.cpu(), task_predicted_labels.cpu(), average='weighted')
elif metric.__name__ in ["accuracy_score"]:
metric_result = metric(task_labels.cpu(), task_predicted_labels.cpu())
elif metric.__name__ in ["pearsonr", "spearmanr"]:
metric_result = []
for i in range(len(task_predicted_labels)):
per_metric_result = metric(task_labels[i].cpu(), task_predicted_labels[i].cpu())
if type(per_metric_result) == tuple or type(per_metric_result) == scipy.stats.stats.SpearmanrResult: per_metric_result = \
per_metric_result[0]
metric_result.append(per_metric_result)
if type(metric_result) == tuple or type(metric_result) == scipy.stats.stats.SpearmanrResult:
metric_result = metric_result[0]
if task.name in ["emobank"]:
for i, item in enumerate(["V", "A", "D"]):
key = task.name, metric.__name__ + f"_{item}"
val_results[key] = metric_result[i]
print(f"eval_results[{eval_loader}, {task.name}, {metric.__name__}_{item}] = {val_results[key]}")
else:
val_results[task.name, metric.__name__] = metric_result
print(f"eval_results[{eval_loader}, {task.name}, {metric.__name__}] = {val_results[task.name, metric.__name__]}")
if metric.__name__ in ["f1_score"]:
val_results[task.name, "w_" + metric.__name__] = w_f1_result
print(f"eval_results[{eval_loader}, {task.name}, w_{metric.__name__}] = {w_f1_result}")
target_names = task2label[task.name]
if task.name == 'tweeteval_sentiment':
# Sentiment (Macro Recall)
metric_ = "macro_recall"
cls_report = classification_report(task_labels.cpu(), task_predicted_labels.cpu(), target_names=target_names, output_dict=True)
val_results[task.name, metric_] = cls_report['macro avg']['recall']
print(f"eval_results[{eval_loader}, {task.name}, {metric_}] = {val_results[task.name, metric_]}")
elif task.name == 'tweeteval_stance':
# Stance (Macro F1 of 'favor' and 'against' classes)
metric_ = "af_f1"
cls_report = classification_report(task_labels.cpu(), task_predicted_labels.cpu(), target_names=target_names, output_dict=True)
f1_against = cls_report['against']['f1-score']
f1_favor = cls_report['favor']['f1-score']
val_results[task.name, metric_] = (f1_against + f1_favor) / 2
print(f"eval_results[{eval_loader}, {task.name}, {metric_}] = {val_results[task.name, metric_]}")
elif task.name == 'tweeteval_irony':
# Irony (Irony class f1)
metric_ = "irony_f1"
cls_report = classification_report(task_labels.cpu(), task_predicted_labels.cpu(), target_names=target_names, output_dict=True)
val_results[task.name, metric_] = cls_report['irony']['f1-score']
print(f"eval_results[{eval_loader}, {task.name}, {metric_}] = {val_results[task.name, metric_]}")
val_results[task.name, "loss"] = sum(loss_items[task.name]) / len(loss_items[task.name])
print(f"eval_results[{eval_loader}, {task.name}, loss] = {val_results[task.name, 'loss']}")
if eval_loader == "test_loader":
if task_config_t['task_type'] == "res":
print("Res matrix: ")
print(val_results)
else:
print("Fine-grained matrix: ")
print(classification_report(task_labels.cpu(), task_predicted_labels.cpu(), target_names=target_names, digits=4))
print("Confusion_matrix: ")
print(confusion_matrix(y_true=task_labels.cpu(), y_pred=task_predicted_labels.cpu(), normalize="true"))
task_data["sentence2"] = task_data.pop("sentence2")
task_data["sentence1"] = task_data.pop("sentence1")
if task_config_t['task_type'] == "res":
task_data["label_id"] = torch.stack(task_labels).permute(1, 0).cpu().detach().numpy().tolist()
task_data["pred_id"] = torch.stack(task_predicted_labels).permute(1, 0).cpu().detach().numpy().tolist()
task_data["label"] = list(task_data["label_id"])
task_data["pred"] = list(task_data["pred_id"])
else:
task_data["label_id"] = task_labels.cpu().detach().numpy().astype(np.int16)
task_data["pred_id"] = task_predicted_labels.cpu().detach().numpy().astype(np.int16)
task_data["label"] = list(map(lambda e: id2label[e], task_data["label_id"]))
task_data["pred"] = list(map(lambda e: id2label[e], task_data["pred_id"]))
pred_results[task.name] = pd.DataFrame(data=task_data, columns=task_columns)
result_df = pd.DataFrame(data=val_results, index=[epoch])
result_df.to_csv(str(results_folder / f"{eval_loader.split('_')[0]}_results.csv"), mode='a', index_label='Epoch')
pred_writer = pd.ExcelWriter(str(results_folder / f"{eval_loader.split('_')[0]}_predictions.xlsx"), engine="openpyxl")
for e in pred_results.keys():
pred_results[e].to_excel(pred_writer, sheet_name=e, index=None)
pred_writer.save()
return sum([sum(ll) / len(ll) for ll in loss_items.values()]) / len(loss_items), result_df # instance-level val loss, data_frame
if __name__ == '__main__':
main()