forked from dansoutner/LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLSTM.py
923 lines (766 loc) · 26.5 KB
/
LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
# -*- coding:utf-8 -*-
"""
Recurrent neural network based statistical language modelling toolkit
Based on LSTM RNN, model proposed by Jürgen Schmidhuber
http://www.idsia.ch/~juergen/
Implemented by Daniel Soutner,
Department of Cybernetics, University of West Bohemia, Plzen, Czech rep.
[email protected], 2014; Licensed under the 3-clause BSD.
"""
__version__ = "0.6.2"
# usual python libs
import numpy as np
import random
import time
#import math
#import sys
import cPickle
from operator import itemgetter
import codecs
# LDA module
from lda import *
# ARPA module
from ArpaLM import *
# fast training
from fast import FastRunTrain as FastRunTrain
from fast import FastRunTrain_outputclasses as FastRunTrain_outputclasses
from fast import FastRunTrain_N as FastRunTrain_N
from fast import FastRunTrain_N_outputclasses as FastRunTrain_N_outputclasses
from fast import FastForward as FastForward
from fast import FastRunTrain_NLDA_outputclasses as FastRunTrain_NLDA_outputclasses
from fast import exp10_f as exp10
# other imports
from numpy import log10 as log10
# numpy settings
np.set_printoptions(edgeitems=2, infstr='Inf', linewidth=75, nanstr='NaN', precision=8, suppress=True, threshold=1000000)
DTYPE = np.float32
print "LSTM LM version %s" % __version__
# CONST
UNK = "<unk>"
ENCODING = "utf-8"
class LSTM(object):
"""Main LSTM LM object"""
def __str__(self):
o = ""
try:
o += "Train text %d words from %s\n" % (len(self.lText), self.train_file)
o += "Test text %d words from %s\n" % (len(self.lTest), self.test_file)
o += "Valid text %d words from %s\n" % (len(self.lValid), self.valid_file)
except (AttributeError, ValueError, TypeError):
pass
o += "Type %s\n" % self.input_type
o += "Input layer %d\n" % self.input_dimension
o += "Hidden layer %d\n" % self.hidden_dimension
o += "Output layer %d\n" % self.output_dimension
o += "Dictionary length: %d\n" % len(self.dic)
return o
def __repr__(self):
return str(self)
def __init__(self, args):
"""
Parse args and initialize net
"""
self.num_threads=args.num_threads
self.version = __version__
self.debug = args.debug
self.rnd_seed = args.rnd_seed
self.independent = args.independent
if not args.save_net:
try:
self.net_save_file = args.train[0] + "_" + str(args.iHidden) + "_" + args.input_type + "_" + str(time.time()).split(".")[0]
except:
self.net_save_file = args.save_net
else:
self.net_save_file = args.save_net
self.net_load_file = args.load_net
self.net_nbest_file = args.nbest_rescore
self.input_type = args.input_type
# if we are loading from file
if self.net_load_file:
print "Loading net from %s..." % self.net_load_file
self.load(self.net_load_file)
if args.train:
self.train = True
else:
self.train = False
if self.debug:
print args
iHidden = 0
if args.iHidden:
iHidden = args.iHidden
# set train, test and valid files
if args.train:
self.train_file = args.train[0]
self.test_file = args.train[1]
self.valid_file = args.train[2]
# load support models
# CSLM
if args.projections_file:
self.projections = cPickle.load(open(args.projections_file))
self.len_projections = len(self.projections.values()[0])
# LDA
if args.stopwords_file:
self.stopwords = set(codecs.open(args.stopwords_file, "r", ENCODING).read().lower().split())
else:
self.stopwords = []
self.len_cache = args.len_cache #default = 50
if args.lda_dict and args.lda_model:
self.lda = LDA(self.stopwords)
self.lda.load(args.lda_model, args.lda_dict)
self.len_lda = len(self.lda.cache_to_fv(["."]))
#print self.lda.getTopics()
# classes
if args.class_file:
self.classes = cPickle.load(open(args.class_file))
all_classes = []
for k in self.classes.keys():
all_classes.append(self.classes[k])
self.len_classes = max(all_classes) + 1
if self.debug:
print "Preparing data..."
if args.train:
# make data
lText = self.text_file_to_list_of_words(self.train_file)
lTest = self.text_file_to_list_of_words(self.test_file)
lValid = self.text_file_to_list_of_words(self.valid_file)
# create vocabulary
if args.vocabulary_file:
self.dic = self.create_dic_from_file(args.vocabulary_file)
else:
self.dic = self.create_dic(self.train_file)
self.dic.remove("</s>") # it is good to have a </s> as 0 in dic
self.dic.insert(0, "</s>")
# create word hashes
self.create_hash()
if args.projections_file:
prj_oov = []
for k in self.dic:
try:
self.projections[k.encode(ENCODING)]
except KeyError:
prj_oov.append(k)
if len(prj_oov) > 0:
print "%d words not found in projections \n (%s)" % (len(prj_oov), ", ".join(prj_oov).encode(ENCODING))
#try:
# self.dic.remove(UNK) # unk word remove from dic
#except ValueError:
# pass
self.iText = np.array(self.word_list2idx(lText))
self.iTest = np.array(self.word_list2idx(lTest))
self.iValid = np.array(self.word_list2idx(lValid))
self.lText = lText
self.lTest = lTest
self.lValid = lValid
self.len_dic = len(self.dic)
self.srilm_file = args.srilm_file
self.srilm_lambda = args.srilm_lambda
self.LMW = args.lmw
self.WIP = args.wip
# load ARPA LM to memory
if self.srilm_file:
print "Loading Arpa LM from %s..." % self.srilm_file
self.arpaLM = ArpaLM(path=self.srilm_file)
else:
self.arpaLM = None
# compute input length - depends on vector type
try:
self.dic
self.input_type
except AttributeError:
print "Error: No type of input vector."
return
else:
if self.input_type == "N":
iInputs = len(self.dic)
elif self.input_type == "FV":
iInputs = self.len_projections
elif self.input_type == "FV+":
iInputs = self.len_projections
elif self.input_type == "FV+LDA":
iInputs = self.len_projections + self.len_lda
elif self.input_type == "N+LDA":
iInputs = len(self.dic) + self.len_lda
elif self.input_type == "N+CLASS":
iInputs = len(self.dic) + self.len_classes
elif self.input_type == "N+LDA+CLASS":
iInputs = len(self.dic) + self.len_classes + self.len_lda
if args.output_classes:
self.create_classes(args.output_classes)
iOutputs = len(self.class_cn) + len(self.dic)
self.output_classes = True
else:
iOutputs = len(self.dic)
self.output_classes = False
if args.train:
# save
self.cell_blocks = iHidden
self.input_dimension = iInputs
self.output_dimension = iOutputs
self.hidden_dimension = iHidden
self.full_hidden_dimension = self.cell_blocks + 1
self.full_input_dimension = self.input_dimension + self.cell_blocks + 1
try: # just to be sure if we loaded all variables
self.CEC
self.context
self.peepInputGate
self.peepForgetGate
self.peepOutputGate
self.weightsNetInput
self.weightsInputGate
self.weightsForgetGate
self.weightsOutputGate
self.weightsGlobalOutput
except (AttributeError, NameError) as e: # if not, init net matrixes
self.CEC = np.zeros((self.cell_blocks), dtype=DTYPE)
self.context = np.zeros((self.cell_blocks), dtype=DTYPE)
self.peepInputGate = np.zeros((self.cell_blocks), dtype=DTYPE)
self.peepForgetGate = np.zeros((self.cell_blocks), dtype=DTYPE)
self.peepOutputGate = np.zeros((self.cell_blocks), dtype=DTYPE)
self.weightsNetInput = np.zeros((self.cell_blocks, self.full_input_dimension), dtype=DTYPE)
self.weightsInputGate = np.zeros((self.cell_blocks, self.full_input_dimension), dtype=DTYPE)
self.weightsForgetGate = np.zeros((self.cell_blocks, self.full_input_dimension), dtype=DTYPE)
self.weightsOutputGate = np.zeros((self.cell_blocks, self.full_input_dimension), dtype=DTYPE)
self.weightsGlobalOutput = np.zeros((self.output_dimension, self.full_hidden_dimension), dtype=DTYPE)
print self
# train, rescore or ppl?
if args.train:
self.alpha = args.alpha
#self.run_train(self.iText, self.iTest, self.iValid, rnd_seed, iHidden, iInputs, iOutputs)
self.run_train()
if args.nbest_rescore:
self.net_nbest_file = args.nbest_rescore
self.nbest_rescore(self.net_nbest_file)
# compute PPL?
if args.ppl_file:
iTextPPL = []
lTextPPL = self.text_file_to_list_of_words(args.ppl_file)
for word in lTextPPL:
try:
iTextPPL.append(self.dic.index(word))
except (IndexError, ValueError, KeyError):
iTextPPL.append(-1) # unk
iTextPPL = np.array(iTextPPL, dtype=long)
if not self.arpaLM:
print "File: %s, PPL:%.2f" % (args.ppl_file, self.ppl(iTextPPL, lTextPPL)[0])
else:
print "File: %s, PPL:%.2f" % (args.ppl_file, self.ppl_combine(iTextPPL, lTextPPL))
def word_list2idx(self, lText):
"""
Converts list of words to list of indexes
"""
iText = [0]*len(lText)
for i in range(len(lText)):
try:
iText[i] = self.word2idx_hash[lText[i]]
except (KeyError):
iText.append(-1) # unk
return iText
def create_hash(self):
"""
Creates word-to-index and index-to-word hashes
"""
self.idx2word_hash = {}
self.word2idx_hash = {}
for idx in range(len(self.dic)):
word = self.dic[idx]
self.idx2word_hash[idx] = word
self.word2idx_hash[word] = idx
def create_dic(self, text_file):
"""
Creates vocabulary form train file
"""
sentences = (line.split() for line in codecs.open(text_file, "r", ENCODING))
sentence_no, vocab = -1, {}
vocab["</s>"] = 1
for sentence_no, sentence in enumerate(sentences):
for word in sentence:
try:
vocab[word] += 1
except KeyError:
vocab[word] = 1
return sorted(vocab.keys())
def create_dic_from_file(self, vocab_file):
"""
Creates vocabulary from input vocabulary file
"""
vocab = {}
vocab["</s>"] = True
with codecs.open(vocab_file, "r", ENCODING) as f:
for line in f:
w = line.strip()
if len(w) > 0:
vocab[w] = True
return sorted(vocab.keys())
def create_classes(self, number_of_classes):
"""
Creates output classes
"""
# create classes
df = 0.
dd = 0.
a = 0
b = 0
class vocab_word():
def __init__(self, word):
self.cn = 0
self.word = word
self.prob = 0.
self.class_index = 0
self.in_class = 0
def make_vocab(text_file):
vocab = {}
vocab[0] = vocab_word("</s>")
sentences = (line.split() for line in codecs.open(text_file, "r", ENCODING))
for sentence in sentences:
for word in sentence:
try:
vocab[self.word2idx_hash[word]].cn += 1
except KeyError:
vocab[self.word2idx_hash[word]] = vocab_word(word)
vocab[self.word2idx_hash[word]].cn = 1
return vocab
self.vocab = make_vocab(self.train_file)
self.class_size = min(number_of_classes, self.len_dic)
for i in self.vocab.keys():
b += self.vocab[i].cn
for i in self.vocab.keys():
dd += np.sqrt(self.vocab[i].cn/float(b))
for i in self.vocab.keys():
df += np.sqrt(self.vocab[i].cn/float(b))/dd
if (df > 1):
df = 1
if (df > (float(a + 1)/self.class_size)):
self.vocab[i].class_index = a
if (a < self.class_size - 1):
a += 1
else:
self.vocab[i].class_index = a
self.class_words = [[]] * (self.class_size)
self.class_cn = np.zeros(self.class_size, dtype=int)
self.class_max_cn = np.zeros(self.class_size)
for i in range(self.class_size):
self.class_cn[i] = 0
self.class_words[i] = [[]]*self.class_max_cn[i]
for i in self.vocab.keys():
cl = self.vocab[i].class_index
self.class_words[cl].append(i)
self.class_cn[cl] += 1
self.word2class_hash = {}
self.idx2class_hash = {}
for i in self.vocab.keys():
self.vocab[i].in_class = self.class_words[self.vocab[i].class_index].index(i)
self.word2class_hash[self.idx2word_hash[i]] = self.vocab[i].class_index
self.idx2class_hash[i] = self.vocab[i].class_index
def text_file_to_list_of_words(self, input_text_file):
"""
Makes from text in input_text_file a list of words, appends </s>
"""
lText = []
try:
with codecs.open(input_text_file, "r", ENCODING) as f:
for line in f:
sText = line.replace("\n", " </s> ") # convert eos
#sText = re.subn("[ ]+", " ", sText)[0] # disable more than one space
#lText += sText.lower().split() # to lowercase
lText += sText.split() # to lowercase
except IOError:
print "File %s not found." % input_text_file
return lText
def index_to_vector(self, idx, cache):
"""
Different kinds of input vectors
"""
if self.input_type == "N":
o = np.zeros((self.len_dic), dtype=DTYPE)
if idx > -1:
o[idx] = 1.
return o
elif self.input_type == "FV+":
try:
return np.array((self.projections[cache[len(cache) - 1].encode(ENCODING)]), dtype=DTYPE)
except (KeyError, IndexError, ValueError):
return np.zeros((self.len_projections), dtype=DTYPE)
elif self.input_type == "FV":
if idx > -1:
try:
return np.array((self.projections[self.idx2word_hash[idx].encode(ENCODING)]), dtype=DTYPE)
except (KeyError, IndexError, ValueError):
return np.zeros((self.len_projections), dtype=DTYPE)
else:
return np.zeros((self.len_projections))
elif self.input_type == "FV+LDA":
o = np.zeros((self.len_projections + self.len_lda), dtype=DTYPE)
try:
o[:self.len_projections] = np.array((self.projections[cache[len(cache) - 1].encode(ENCODING)]), dtype=DTYPE)
except (KeyError, IndexError, ValueError):
pass # zeros
cache = [word for word in cache if word not in self.stopwords]
lda_vector = np.array(self.lda.cache_to_fv(cache))
o[self.len_projections:] = lda_vector
return o
elif self.input_type == "N+LDA":
o = np.zeros((self.len_dic + self.len_lda), dtype=DTYPE)
if idx > -1:
o[idx] = 1.
cache = [word for word in cache if word not in self.stopwords]
lda_vector = np.array(self.lda.cache_to_fv(cache))
o[self.len_dic:] = lda_vector
return o
elif self.input_type == "N+CLASS":
o = np.zeros((self.len_dic + self.len_classes), dtype=DTYPE)
if idx > -1:
o[idx] = 1.
try:
cl = self.classes[self.dic[idx]]
o[self.len_dic + cl] = 1.
except (KeyError, IndexError, ValueError):
pass
return o
elif self.input_type == "N+LDA+CLASS":
o = np.zeros((self.len_dic + self.len_classes + self.len_lda), dtype=DTYPE)
if idx > -1:
# N
o[idx] = 1.
# CLASS
try:
cl = self.classes[self.dic[idx]]
o[self.len_dic + cl] = 1.
except (KeyError, IndexError, ValueError):
pass
#LDA
cache = [word for word in cache if word not in self.stopwords]
lda_vector = np.array(self.lda.cache_to_fv(cache))
o[self.len_dic + self.len_classes:] = lda_vector
return o
def Reset(self):
"""
Reset net state
"""
self.CEC = np.zeros((self.cell_blocks), dtype=DTYPE)
self.context = np.ones((self.cell_blocks), dtype=DTYPE)
self.dSdwWeightsNetInput = np.zeros((self.cell_blocks, self.full_input_dimension), dtype=DTYPE)
self.dSdwWeightsInputGate = np.zeros((self.cell_blocks, self.full_input_dimension), dtype=DTYPE)
self.dSdwWeightsForgetGate = np.zeros((self.cell_blocks, self.full_input_dimension), dtype=DTYPE)
def save(self, filename):
"""
cPickle net to filename
"""
# attributes that we want to save
to_save = set(['CEC', 'cell_blocks',
'context', 'dic', 'full_hidden_dimension',
'full_input_dimension', 'hidden_dimension',
'independent', 'input_dimension', 'output_dimension',
'peepForgetGate', 'peepInputGate', 'peepOutputGate',
'version', 'weightsForgetGate', 'weightsGlobalOutput',
'weightsInputGate', 'weightsNetInput', 'weightsOutputGate',
'lda', 'lda_len', 'out_word_to_class', 'out_ppst_to_class',
'out_class', 'projections', 'len_projections', 'lda', 'len_lda',
'classes', 'len_classes', "input_type",
'stopwords', 'len_cache',
'class_size', 'class_max_cn', 'class_cn', 'class_words',
'idx2class_hash', 'word2class_hash', 'idx2word_hash', 'word2idx_hash'])
# need to convert memoryviews to array
convert_and_save = set(['CEC', 'context',
'peepForgetGate', 'peepInputGate', 'peepOutputGate',
'weightsForgetGate', 'weightsGlobalOutput',
'weightsInputGate', 'weightsNetInput', 'weightsOutputGate',])
# this is rest which we do not convert
only_save = to_save - convert_and_save
lstm_container = {}
for attr in dir(self):
if attr in convert_and_save:
lstm_container[attr] = np.asarray(getattr(self,attr))
if attr in only_save:
lstm_container[attr] = getattr(self, attr)
try:
cPickle.dump(lstm_container, open(filename+".lstm", "wb"), protocol=cPickle.HIGHEST_PROTOCOL)
except IOError:
raise
def load(self, filename):
"""
Loads net from file
"""
try:
lstm_container = cPickle.load(open(filename, "rb"))
except IOError:
raise
for attr in lstm_container.keys():
try:
setattr(self, attr, lstm_container[attr])
except:
raise
if not self.version == __version__:
print "Warning: Loadad RNN is version %s, this is version %s." % (self.version, __version__)
def nbest_rescore(self, input_file):
"""
Rescores the input nbest file
# nbset file format:
# hypothesis_number acoustic_model_score language_model_score count_of_words <s> words of hypothesis </s>
"""
if self.net_load_file:
N = "_".join([self.net_load_file, input_file, str(self.srilm_lambda), str(self.srilm_file), str(self.LMW),
str(self.WIP), "rescored.nbest"])
else:
N = "_".join([input_file, str(self.srilm_lambda), str(self.srilm_file), str(self.LMW), str(self.WIP),
"rescored.nbest"])
hypothesis = []
LMW = self.LMW
WIP = self.WIP
cache = []
no_current = 0
with codecs.open(N, "w", ENCODING) as fout:
for line in codecs.open(input_file, "r", ENCODING):
l = line.strip().split()
try:
# read line
no = int(l[0])
am = float(l[1])
lm = float(l[2])
wrd_cnt = int(l[3])
words = l[5:] # without <s>
except IndexError:
continue
if no > no_current:
# results from last block
unfiltered = [C for C in hypothesis if C[0] == no_current]
s = sorted(unfiltered, key=itemgetter(6), reverse=True)[0] # sort by score
fout.write("%d %f %f %d %s %f %f\n" % (s[0], s[1], s[2], s[3], " ".join(s[4]), s[5], s[6]))
cache += s[4]
no_current = no
new_logp = self.getLogP(words, cache)
score = (LMW * new_logp) + am + (WIP * wrd_cnt)
hypothesis.append((no, am, lm, wrd_cnt, words, new_logp, score))
def ppl(self, iText, lText):
"""
Computes perplexity of RNN on given text (splitted)
"""
logp = 0.
count = 0
oov_net = 0
self.Reset()
for word_idx in range(len(iText) - 1):
if iText[word_idx + 1] > -1:
#!cache = lText[word_idx - self.len_cache: word_idx]
cache = lText[word_idx - self.len_cache: word_idx + 1]
#vector = self.index_to_vector(iText[word_idx], cache)
output = FastForward(self, iText[word_idx], iText[word_idx + 1], cache)
if self.output_classes:
next_word_idx = iText[word_idx + 1]
logp += log10(output[self.len_dic + self.idx2class_hash[next_word_idx]] * output[next_word_idx])
else:
logp += log10(output[iText[word_idx + 1]])
count += 1
else:
#l += oov_log_penalty
#print "LSTM OOV at %d" % ii
oov_net += 1
pass
if iText[word_idx + 1] == 0 and self.independent:
self.CEC = np.zeros((self.cell_blocks), dtype=DTYPE)
self.context = np.ones((self.cell_blocks), dtype=DTYPE)
if self.debug:
print "Net OOVs %d" % oov_net
return exp10(-logp / count), logp
def ppl_combine(self, iText, lText):
"""
Computes perplexity of RNN on given text (splitted)
"""
logp_net = 0.
logp_sri = 0.
logp_combine = 0.
oov_combine = 0
oov_sri = 0
oov_net = 0
count = 0
LOG10TOLOG = np.log(10)
LOGTOLOG10 = 1. / LOG10TOLOG
oov_penalty = -8 #some ad hoc penalty - when mixing different vocabularies, single model score is not real PPL
p_sri = 0.
p_net = 0.
self.Reset()
for word_idx in range(len(iText) - 1):
ctx = lText[max(0, word_idx - self.len_cache): word_idx + 2] # last xx words
ctx = ctx[::-1]
# ARPA takes only the last sentence
if "</s>" in ctx:
idx = ctx.index("</s>")
if idx == 0:
try:
idx = ctx[1:].index("</s>")
except ValueError:
idx = len(ctx) - 1
ctx = ctx[:idx + 1]
if len(ctx) == 2 and ctx[len(ctx) - 1] == "</s>":
ctx.insert(1, "<s>")
l_sri = LOGTOLOG10 * self.arpaLM.prob(*ctx)
p_sri = exp10(l_sri)
if (iText[word_idx + 1] > -1) or (l_sri > -98): # not NetOOV or not SriOOV
if iText[word_idx + 1] == -1: # if NetOOV
logp_net += oov_penalty
#logp_combine += log10(0 * (1. - self.srilm_lambda) + p_sri * srilm_lambda)
logp_combine += log10(p_sri * self.srilm_lambda)
else: # if not NetOOV
cache = lText[word_idx - self.len_cache: word_idx + 1]
next_word_idx = iText[word_idx + 1]
output = FastForward(self, iText[word_idx], next_word_idx, cache)
if self.output_classes:
p_net = output[self.len_dic + self.idx2class_hash[next_word_idx]] * output[next_word_idx]
else:
p_net = output[next_word_idx]
logp_net += log10(p_net)
logp_combine += log10((p_net * (1. - self.srilm_lambda)) + (p_sri * self.srilm_lambda))
if l_sri > -98: # if not SriOOV
logp_sri += l_sri
count += 1
else:
oov_combine += 1
# count OOVs
if iText[word_idx + 1] == -1:
oov_net += 1
if l_sri < -98:
oov_sri += 1
if iText[word_idx + 1] == 0 and self.independent:
self.CEC = np.zeros((self.cell_blocks), dtype=DTYPE)
self.context = np.ones((self.cell_blocks), dtype=DTYPE)
print "PPL Net: %.2f" % exp10(-logp_net / count)
print "OOV Net: %d" % oov_net
print "PPL SRI: %.2f" % exp10(-logp_sri / count)
print "OOV SRI: %d" % oov_sri
print "PPL: %.2f" % exp10(-logp_combine / count)
print "OOV: %d" % oov_combine
return exp10(-logp_combine / count)
def getLogP(self, words, cache):
#Gets logratimic probability of given text (words) with cache text before
#@param words: list of String
#@param cache: list of String
#@return: float
#convert to idxs
logp = 0.
logp_net = 0.
logp_sri = 0.
LOG10TOLOG = np.log(10)
LOGTOLOG10 = 1. / LOG10TOLOG
oov_log_penalty = -5 # log penalty
srilm_lambda = self.srilm_lambda
iText = [0]
for word in words:
try:
iText.append(self.word2idx_hash[word])
except KeyError:
iText.append(-1) # unk
# only RNN
if not self.srilm_file:
for word_idx in range(len(iText) - 1):
if iText[word_idx + 1] > -1:
cache = words[word_idx - self.len_cache: word_idx + 1]
next_word_idx = iText[word_idx + 1]
output = FastForward(self, iText[word_idx], next_word_idx, cache)
if self.output_classes:
logp += log10(output[self.len_dic + self.idx2class_hash[next_word_idx]] * output[next_word_idx])
else:
logp += log10(output[next_word_idx])
else:
logp += oov_log_penalty
# combine with SRILM
else:
self.Reset()
for word_idx in range(len(iText) - 1):
ctx = words[: word_idx + 1] # last xx words
ctx.insert(0, "<s>")
ctx = ctx[::-1]
l_sri = LOGTOLOG10 * self.arpaLM.prob(*ctx)
p_sri = exp10(l_sri)
# if in RNN dic
if iText[word_idx + 1] > -1 and l_sri > -98:
cache = words[word_idx - self.len_cache: word_idx + 1]
next_word_idx = iText[word_idx + 1]
output = FastForward(self, iText[word_idx], next_word_idx, cache)
if self.output_classes:
p_net = output[self.len_dic + self.idx2class_hash[next_word_idx]] * output[next_word_idx]
else:
p_net = output[next_word_idx]
logp += log10(p_net * (1 - srilm_lambda) + p_sri * (srilm_lambda))
# if not
else: # give a penalty or back-off with SRI
if l_sri > -98:
logp += l_sri
else:
logp += oov_log_penalty
return logp
def init_net(self):
"""
Initialize the net weights with random numbers,
"""
init_weight_range = 0.1
biasInputGate = 2 #orig. 2
biasForgetGate = -2 #orig. -2
biasOutputGate = 2 #orig. 2
# init random module
random.seed(self.rnd_seed)
# random init
for i in xrange(self.full_input_dimension):
for j in xrange(self.cell_blocks):
self.weightsNetInput[j, i] = (random.random() * 2 - 1) * init_weight_range
self.weightsInputGate[j, i] = (random.random() * 2 - 1) * init_weight_range
self.weightsForgetGate[j, i] = (random.random() * 2 - 1) * init_weight_range
self.weightsOutputGate[j, i] = (random.random() * 2 - 1) * init_weight_range
for j in xrange(self.cell_blocks):
self.weightsInputGate[j, self.full_input_dimension - 1] += biasInputGate
self.weightsForgetGate[j, self.full_input_dimension - 1] += biasForgetGate
self.weightsOutputGate[j, self.full_input_dimension - 1] += biasOutputGate
for j in xrange(self.cell_blocks):
self.peepInputGate[j] = (random.random() * 2 - 1) * init_weight_range
self.peepForgetGate[j] = (random.random() * 2 - 1) * init_weight_range
self.peepOutputGate[j] = (random.random() * 2 - 1) * init_weight_range
for j in xrange(self.full_hidden_dimension):
for k in xrange(self.output_dimension):
self.weightsGlobalOutput[k][j] = (random.random() * 2 - 1) * init_weight_range
def run_train(self):
"""
Init and train net
"""
self.init_net()
# compute ppl of raw net
p = [(self.len_dic, self.len_dic*-1000)] # if only zeros in RNN, should be ppl like this
iter = 0
while True:
start = time.time()
# train one iteration
if self.input_type == "N":
if self.output_classes:
FastRunTrain_N_outputclasses(self, self.iText)
else:
FastRunTrain_N(self, self.iText)
elif self.input_type == "N+LDA":
if self.output_classes:
FastRunTrain_NLDA_outputclasses(self, self.iText, self.lText)
else:
FastRunTrain(self, self.iText, self.lText)
else:
if self.output_classes:
FastRunTrain_outputclasses(self, self.iText, self.lText)
else:
FastRunTrain(self, self.iText, self.lText)
p.append(self.ppl(self.iTest, self.lTest))
print " \r",
print "%d, speed %.2f words/s, ppl: %.2f, alpha %.4f" % (
iter, len(self.lText) / (time.time() - start), p[len(p) - 1][0], self.alpha)
iter += 1
#logp*min_improvement<llogp
if p[len(p) - 1][1] * 1.003 < p[len(p) - 2][1]:
self.alpha /= 2
# save iteration - in case we will crash
self.save("%s_%02d" % (self.net_save_file, iter))
# when to stop
if self.alpha < 0.0005:
break
# maximal number of iterations allowed
if iter > 20:
break
# print combine test PPL if srilm model presented
if self.srilm_file:
self.ppl_combine(self.iValid, self.lValid)
else:
print self.ppl(self.iValid, self.lValid)
# save final net
self.save(self.net_save_file)