-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathneural_network.py
642 lines (499 loc) · 24.4 KB
/
neural_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import numpy as np
import timeit
import random
import math
import copy
from functools import reduce
import matplotlib.pyplot as plt
import scipy.special
import metrics
import regularizer
import weights_initializer
eta = 1e-8
class Conv1d:
def __init__(self, filter_number, kernel_size, stride_size=1, input_size=0, optimizer=None, weights_initializer=weights_initializer.he_normal):
'''
Parameters
----------
filter_number : filter number
kernel_size : kernel size
stride_size : stride size
input_size : input shape
optimizer : Optimize algorithm, see also optimizer.py
weights_initializer : weight initializer, see also weights_initializer.py
'''
self.__filter_number = filter_number
self.__input_size = input_size
self.__kernel_size = kernel_size
self.__stride_size = stride_size
self.__optimizer = optimizer
self.__weights_initializer = weights_initializer
def init(self, input_size=0):
if self.__input_size == 0:
self.__input_size = input_size
self.__input_timesteps, self.__input_channels = self.__input_size
self.__padding_size = (math.ceil(self.__input_timesteps / self.__stride_size) - 1) * self.__stride_size + self.__kernel_size - self.__input_timesteps
self.__padding = self.__padding_size // 2
self.__input_timesteps += self.__padding_size
self.__output_size = (self.__input_timesteps - self.__kernel_size) // self.__stride_size + 1
self.output_size = (self.__output_size, self.__filter_number)
self.__W = self.__weights_initializer(self.__kernel_size * self.__input_channels, self.__filter_number, (self.__filter_number, self.__input_channels, self.__kernel_size))
self.__b = np.zeros((self.__filter_number))
def __img2col(self, img, input_channels):
col = np.zeros((self.__batch_size, self.__output_size, self.__kernel_size * input_channels))
for h in range(0, self.__output_size):
col[:, h, :] = img[:, h*self.__stride_size:h*self.__stride_size+self.__kernel_size, :].reshape(self.__batch_size, -1, order='F')
return col
def forward(self, X, mode):
self.__batch_size = X.shape[0]
X = np.pad(X[:], ((0, 0), (self.__padding, self.__padding), (0, 0)), 'constant')
self.__col = self.__img2col(X, self.__input_channels)
return self.__col.dot(self.__W.reshape(self.__filter_number, -1).T) + self.__b[None, None, :]
def optimize(self, residual):
g_W = (np.tensordot(residual.reshape(self.__batch_size, self.__filter_number, -1), self.__col, axes=[[0,2], [0, 1]]) / self.__batch_size).reshape(self.__W.shape)
g_b = np.mean(np.sum(residual, axis=(1, 2)), axis=0)
g_W, g_b = self.__optimizer.optimize([g_W, g_b])
self.__W -= g_W
self.__b -= g_b
def backward(self, residual):
residual = np.pad(residual[:], ((0, 0), (self.__padding, self.__padding), (0, 0)), 'constant')
W = self.__W[:, ::-1]
col = self.__img2col(residual, self.__filter_number)
return col.dot(W.reshape(self.__input_channels, -1).T)
class Conv2d:
def __init__(self, filter_number, kernel_size, stride_size=1, input_size=0, optimizer=None, weights_initializer=weights_initializer.he_normal):
'''
Parameters
----------
filter_number : filter number
kernel_size : kernel size
stride_size : stride size
input_size : input shape
optimizer : Optimize algorithm, see also optimizer.py
weights_initializer : weight initializer, see also weights_initializer.py
'''
self.__filter_number = filter_number
self.__input_size = input_size
self.__kernel_size = kernel_size
self.__stride_size = stride_size
self.__optimizer = optimizer
self.__weights_initializer = weights_initializer
def init(self, input_size=0):
if self.__input_size == 0:
self.__input_size = input_size
self.__input_channels, self.__input_h, self.__input_w = self.__input_size
self.__padding_size = self.__kernel_size // 2
self.__input_h += self.__padding_size * 2
self.__input_w += self.__padding_size * 2
self.__output_h = (self.__input_h - self.__kernel_size) // self.__stride_size + 1
self.__output_w = (self.__input_w - self.__kernel_size) // self.__stride_size + 1
self.__output_size = self.__output_h * self.__output_w
self.output_size = (self.__filter_number, self.__output_h, self.__output_w)
self.__W = self.__weights_initializer(self.__kernel_size ** 2 * self.__input_channels, self.__filter_number, (self.__filter_number, self.__input_channels, self.__kernel_size, self.__kernel_size))
self.__b = np.zeros((self.__filter_number))
def __img2col(self, img, input_channels):
col = np.zeros((self.__batch_size, self.__output_size, self.__kernel_size ** 2 * input_channels))
for h in range(0, self.__output_h):
for w in range(0, self.__output_w):
col[:, self.__output_w*h+w, :] = img[:, :, h*self.__stride_size:h*self.__stride_size+self.__kernel_size, w*self.__stride_size:w*self.__stride_size+self.__kernel_size].reshape(self.__batch_size, -1)
return col
def forward(self, X, mode):
self.__batch_size = X.shape[0]
self.__input_shape = X.shape
X = np.pad(X[:, :], ((0, 0), (0, 0), (self.__padding_size, self.__padding_size), (self.__padding_size, self.__padding_size)), 'constant')
self.__col = self.__img2col(X, self.__input_channels)
output = self.__col.dot(self.__W.reshape(self.__filter_number, -1).T)
return np.transpose(output, axes=(0, 2, 1)).reshape((self.__batch_size, self.__filter_number, self.__output_h, self.__output_w)) + self.__b[None, :, None, None]
def optimize(self, residual):
g_W = (np.tensordot(residual.reshape(self.__batch_size, self.__filter_number, -1), self.__col, axes=[[0,2], [0, 1]]) / self.__batch_size).reshape(self.__W.shape)
g_b = np.mean(np.sum(residual, axis=(2, 3)), axis=0)
g_W, g_b = self.__optimizer.optimize([g_W, g_b])
self.__W -= g_W
self.__b -= g_b
def backward(self, residual):
residual = np.pad(residual[:, :], ((0, 0), (0, 0), (self.__padding_size, self.__padding_size), (self.__padding_size, self.__padding_size)), 'constant')
W = np.transpose(self.__W, axes=(1, 0, 2, 3))
W = np.rot90(W, k=2, axes=(2, 3))
col = self.__img2col(residual, self.__filter_number)
residual = col.dot(W.reshape(self.__input_channels, -1).T)
return np.transpose(residual, axes=(0, 2, 1)).reshape(self.__input_shape)
class MaxPool:
def __init__(self, pool_size):
'''
Parameters
----------
pool_size : pool size
'''
self.__pool_size = pool_size
def init(self, input_size=0):
self.__input_channels, self.__input_h, self.__input_w = input_size
self.__output_h = (self.__input_h - self.__pool_size) // self.__pool_size + 1
self.__output_w = (self.__input_w - self.__pool_size) // self.__pool_size + 1
self.output_size = (self.__input_channels, self.__output_h, self.__output_w)
def forward(self, X, mode):
self.__batch_size = X.shape[0]
self.__output_index = np.zeros_like(X)
for h in range(0, self.__output_h):
for w in range(0, self.__output_w):
output_index = np.argmax(X[:, :, h*self.__pool_size:h*self.__pool_size+self.__pool_size, w*self.__pool_size:w*self.__pool_size+self.__pool_size].reshape((self.__batch_size, self.__input_channels, -1)), axis=2)
output_index_h, output_index_w = divmod(output_index, self.__pool_size)
for i in range(self.__batch_size):
for j in range(self.__input_channels):
self.__output_index[i, j, h*self.__pool_size+output_index_h[i, j], w*self.__pool_size+output_index_w[i, j]] = 1
return X.reshape(self.__batch_size, self.__input_channels, self.__output_h, self.__pool_size, self.__output_w, self.__pool_size).max(axis=(3,5))
def backward(self, residual):
residual = np.repeat(residual, repeats=self.__pool_size, axis=2)
residual = np.repeat(residual, repeats=self.__pool_size, axis=3)
return residual * self.__output_index
class MeanPool:
def __init__(self, pool_size):
'''
Parameters
----------
pool_size : pool size
'''
self.__pool_size = pool_size
def init(self, input_size=0):
self.__input_channels, self.__input_h, self.__input_w = input_size
self.__output_h = (self.__input_h - self.__pool_size) // self.__pool_size + 1
self.__output_w = (self.__input_w - self.__pool_size) // self.__pool_size + 1
self.output_size = (self.__input_channels, self.__output_h, self.__output_w)
def forward(self, X, mode):
self.__batch_size = X.shape[0]
H, W = self.__input_h // self.__pool_size, self.__input_w // self.__pool_size
return X[:, :, :H*self.__pool_size, :W*self.__pool_size].reshape(self.__batch_size, self.__input_channels, H, self.__pool_size, W, self.__pool_size).mean(axis=(3, 5))
def backward(self, residual):
residual /= self.__pool_size ** 2
residual = np.repeat(residual, repeats=self.__pool_size, axis=2)
residual = np.repeat(residual, repeats=self.__pool_size, axis=3)
return residual
class BatchNormalization:
def __init__(self, optimizer=None):
'''
Parameters
----------
optimizer : Optimize algorithm, see also optimizer.py
'''
self.__optimizer = optimizer
def init(self, input_size=0):
self.output_size = input_size
self.__gamma = np.ones(self.output_size)
self.__beta = np.zeros(self.output_size)
self.__predict_mean = 0
self.__predict_std = 0
def forward(self, X, mode):
momentum = 0.999
self.__X = X
if mode == 'fit':
self.__mean = np.mean(self.__X, axis=0)
self.__predict_mean = momentum * self.__predict_mean + (1 - momentum) * self.__mean
self.__std = np.std(self.__X, axis=0)
self.__predict_std = momentum * self.__predict_std + (1 - momentum) * self.__std
self.__X_hat = (self.__X - self.__mean) / (self.__std + eta)
elif mode == 'predict':
self.__X_hat = (self.__X - self.__predict_mean) / (self.__predict_std + eta)
return self.__gamma * self.__X_hat + self.__beta
def backward(self, residual):
d_X_hat = residual * self.__gamma
d_var = np.sum(-d_X_hat * (self.__X - self.__mean) * ((self.__std + eta) ** -3) / 2, axis=0)
d_mean = np.sum(-d_X_hat / (self.__std + eta), axis=0) - 2 * d_var * np.mean(self.__X - self.__mean)
batch_size = self.__X.shape[0]
return d_X_hat / (self.__std + eta) + d_var * 2 * (self.__X - self.__mean) / batch_size + d_mean / batch_size
def optimize(self, residual):
g_gamma = np.mean(residual * self.__X_hat, axis=0)
g_beta = np.mean(residual, axis=0)
g_gamma, g_beta = self.__optimizer.optimize([g_gamma, g_beta])
self.__gamma -= g_gamma
self.__beta -= g_beta
class Dropout:
def __init__(self, p=0):
'''
Parameters
----------
p : the probability of drop out
'''
self.__p = p
def init(self, input_size=0):
self.output_size = input_size
def forward(self, X, mode):
if self.__p > 0 and mode == 'fit':
self.__dropout_index = random.sample(range(self.output_size), int(self.output_size * self.__p))
X[:, self.__dropout_index] = 0
return X / (1 - self.__p)
def backward(self, residual):
if self.__p > 0:
residual[:, self.__dropout_index] = 0
return residual / (1 - self.__p)
class Flatten:
def init(self, input_size=0):
self.output_size = reduce(lambda i, j : i * j, input_size)
def forward(self, X, mode):
self.__input_shape = X.shape
return X.reshape(self.__input_shape[0], -1)
def backward(self, residual):
return residual.reshape(self.__input_shape)
class Rnn:
class __RnnCell:
def __init__(self, input_size, output_size, optimizer):
self.__U = weights_initializer.xavier_normal(output_size, output_size, (output_size, output_size))
self.__U_gradient = 0
self.__W = weights_initializer.xavier_normal(input_size, output_size, (input_size, output_size))
self.__W_gradient = 0
self.__b = np.zeros(output_size)
self.__b_gradient = 0
self.__V = weights_initializer.xavier_normal(output_size, output_size, (output_size, output_size))
self.__V_gradient = 0
self.__c = np.zeros(output_size)
self.__c_gradient = 0
self.__optimizer = optimizer
def forward(self, X, h_pre):
self.__X = X
self.__h_pre = h_pre
self.__h = np.tanh(self.__X.dot(self.__W) + self.__h_pre.dot(self.__U) + self.__b)
Z = self.__h.dot(self.__V) + self.__c
return self.__h, Z
def backward(self, residual):
batch_size = residual.shape[0]
self.__V_gradient += self.__h.T.dot(residual) / batch_size
self.__c_gradient += np.mean(residual, axis=0)
residual = residual.dot(self.__V.T)
residual *= (1 - self.__h ** 2)
self.__W_gradient += self.__X.T.dot(residual) / batch_size
self.__b_gradient += np.mean(residual, axis=0)
self.__U_gradient += self.__h_pre.T.dot(residual) / batch_size
return residual.dot(self.__W.T), residual.dot(self.__U.T)
def optimize(self):
g_U, g_W, g_b, g_V, g_c = self.__optimizer.optimize([self.__U_gradient, self.__W_gradient, self.__b_gradient, self.__V_gradient, self.__c_gradient])
self.__U -= g_U
self.__W -= g_W
self.__b -= g_b
self.__V -= g_V
self.__c -= g_c
self.__U_gradient = 0
self.__W_gradient = 0
self.__b_gradient = 0
self.__V_gradient = 0
self.__c_gradient = 0
def __init__(self, time_steps, output_size, activivation, layer_size, input_size=0, optimizer=None):
self.output_size = output_size
self.__input_size = input_size
self.__time_steps = time_steps
self.__layer_size = layer_size
self.__activations = np.array([activivation() for i in range(self.__time_steps * self.__layer_size)]).reshape((self.__layer_size, self.__time_steps))
self.__optimizer = [copy.copy(optimizer) for i in range(layer_size)]
def init(self, input_size=0):
if self.__input_size == 0:
self.__input_size = input_size
self.__rnn_cells = []
self.__rnn_cells.append(self.__RnnCell(self.__input_size, self.output_size, self.__optimizer[0]))
for i in range(1, self.__layer_size):
self.__rnn_cells.append(self.__RnnCell(self.output_size, self.output_size, self.__optimizer[i]))
def forward(self, X, mode):
batch_size = X.shape[0]
h = np.zeros((batch_size, self.__time_steps, self.__layer_size, self.output_size))
for i in range(self.__time_steps):
y = X[:, i]
for j in range(self.__layer_size):
if i == 0:
h_pre = np.zeros((batch_size, self.output_size))
else:
h_pre = h[:, i - 1, j]
h[:, i, j], Z = self.__rnn_cells[j].forward(y, h_pre)
y = self.__activations[j, i].forward(Z, mode)
return y
def optimize(self, residual):
residual_X = residual
residual_h = [0 for i in range(self.__layer_size)]
for i in range(self.__time_steps - 1, -1, -1):
for j in range(self.__layer_size - 1, -1, -1):
residual_tmp = self.__activations[j, i].backward(residual_X + residual_h[j])
residual_X, residual_h[j] = self.__rnn_cells[j].backward(residual_tmp)
residual_X = 0
for i in range(self.__layer_size):
self.__rnn_cells[i].optimize()
class Dense:
def __init__(self, output_size, input_size=0, optimizer=None, regularizer=regularizer.Regularizer(0), weights_initializer=weights_initializer.he_normal):
'''
Parameters
----------
output_size : output dimension
input_size : input dimension
optimizer : Optimize algorithm, see also optimizer.py
regularizer : Regularize algorithm, see also regularizer.py
weights_initializer : weight initializer, see also weights_initializer.py
'''
self.output_size = output_size
self.__input_size = input_size
self.__optimizer = optimizer
self.__regularizer = regularizer
self.__weights_initializer = weights_initializer
def init(self, input_size=0):
if self.__input_size == 0:
self.__input_size = input_size
self.__W = self.__weights_initializer(self.__input_size, self.output_size, (self.__input_size, self.output_size))
self.__b = np.zeros(self.output_size)
def forward(self, X, mode):
self.__X = X
return self.__X.dot(self.__W) + self.__b
def backward(self, residual):
return residual.dot(self.__W.T)
def optimize(self, residual):
batch_size = self.__X.shape[0]
g_W = self.__X.T.dot(residual) / batch_size + self.__regularizer.regularize(self.__W)
g_b = np.mean(residual, axis=0)
g_W, g_b = self.__optimizer.optimize([g_W, g_b])
self.__W -= g_W
self.__b -= g_b
class Tanh:
def init(self, input_size=0):
self.output_size = input_size
def forward(self, X, mode):
self.__output = np.tanh(X)
return self.__output
def backward(self, residual):
return (1 - self.__output ** 2) * residual
class Relu:
def init(self, input_size=0):
self.output_size = input_size
def forward(self, X, mode):
self.__X = X
return np.maximum(self.__X, 0)
def backward(self, residual):
return (self.__X > 0) * residual
class Sigmoid:
def forward(self, X, mode):
return scipy.special.expit(X)
def backward(self, residual):
return residual
class Softmax:
def forward(self, X, mode):
return scipy.special.softmax(X - np.max(X, axis=1, keepdims=True), axis=1)
def backward(self, residual):
return residual
class NeuralNetwork:
def __init__(self, loss, debug=True):
'''
Parameters
----------
loss : loss function including categorical_crossentropy, binary_crossentropy, mse, categorical_hinge
'''
self.__debug = debug
self.__layers = []
self.__loss = loss
def __get_residual(self, h, y):
if self.__loss == 'binary_crossentropy' or self.__loss == 'mse' or self.__loss == 'categorical_crossentropy':
return h - y
elif self.__loss == 'categorical_hinge':
batch_size = y.shape[0]
correct_index = np.argmax(y, axis=1)
residual = np.zeros_like(y)
residual[h - h[range(batch_size), correct_index].reshape((-1, 1)) > 0] = 1
residual[range(batch_size), correct_index] -= np.sum(residual, axis=1)
return residual
def __get_accuracy(self, h, y):
if self.__loss == 'categorical_crossentropy' or self.__loss == 'categorical_hinge':
return metrics.accuracy(np.argmax(h, axis=1), np.argmax(y, axis=1))
elif self.__loss == 'binary_crossentropy':
return metrics.accuracy(np.around(h), y)
else:
return 0
def __get_loss(self, h, y):
if self.__loss == 'binary_crossentropy':
loss = -np.mean(np.sum(y * np.log(h + eta) + (1 - y) * np.log(1 - h + eta), axis=1))
elif self.__loss == 'mse':
loss = np.mean((h - y) ** 2)
elif self.__loss == 'categorical_crossentropy':
loss = -np.mean(np.sum(y * np.log(h + eta), axis=1))
elif self.__loss == 'categorical_hinge':
batch_size = y.shape[0]
correct_index = np.argmax(y, axis=1)
loss = np.mean(np.sum(np.maximum(0, h - h[range(batch_size), correct_index].reshape((-1, 1)) + 1), axis=1) - 1)
return loss
def __log(self, epoch, loss, elapse, accuracy):
print('epochs: %d; loss: %f; elapse: %f; accuracy: %f' %(epoch, loss, elapse, accuracy))
def __draw_figure(self, loss, accuracy):
_, ax_loss = plt.subplots()
ax_loss.plot(loss, 'r')
ax_accuracy = ax_loss.twinx()
ax_accuracy.plot(accuracy, 'b')
plt.show()
def __foreward(self, X, mode='fit'):
for layer in self.__layers:
X = layer.forward(X, mode)
return X
def __backward(self, residual):
for layer in reversed(self.__layers):
residual_backup = residual
if layer != self.__layers[0]:
residual = layer.backward(residual)
if hasattr(layer, 'optimize'):
layer.optimize(residual_backup)
def add(self, layer):
if hasattr(layer, 'init'):
if len(self.__layers) > 0:
layer.init(self.__layers[-1].output_size)
else:
layer.init()
self.__layers.append(layer)
def fit(self, X, y, batch_size, epochs):
'''
Parameters
----------
X : shape (n_samples, n_features)
Training data
y : shape (n_samples, n_classes)
Target values
batch_size : mini batch size
epochs : The number of epochs
'''
data_number = X.shape[0]
epoch = (data_number + batch_size - 1) // batch_size
loss = []
accuracy = []
for _ in range(epochs):
start_time = timeit.default_timer()
permutation = np.random.permutation(data_number)
X_epoch = X[permutation]
y_epoch = y[permutation]
for i in range(epoch):
X_batch = X_epoch[batch_size*i : min(batch_size*(i+1), data_number)]
y_batch = y_epoch[batch_size*i : min(batch_size*(i+1), data_number)]
h = self.__foreward(X_batch)
residual = self.__get_residual(h, y_batch)
self.__backward(residual)
loss.append(self.__get_loss(h, y_batch))
accuracy.append(self.__get_accuracy(h, y_batch))
self.__log(_, loss[-1], timeit.default_timer() - start_time, np.mean(accuracy))
if self.__debug:
self.__draw_figure(loss, accuracy)
def predict(self, X, classes=None):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
classes : shape (n_classes,)
The all labels
Returns
-------
y : shape (n_samples, n_classes)
Predicted class label per sample.
'''
if self.__loss == 'categorical_crossentropy' or self.__loss == 'categorical_hinge':
return classes[np.argmax(self.score(X), axis=1)]
elif self.__loss == 'binary_crossentropy':
return np.around(self.score(X))
elif self.__loss == 'mse':
return self.score(X)
def score(self, X):
'''
Parameters
----------
X : shape (n_samples, n_features)
Predicting data
Returns
-------
y : shape (n_samples, n_classes)
Predicted score of class per sample.
'''
return self.__foreward(X, 'predict')