-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
62 lines (50 loc) · 2.64 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import os.path
import cv2
import numpy as np
from torch.utils.data import Dataset
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png']
def is_image_file(filename):
filename_lower = filename.lower()
return any(filename_lower.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(split='train', data_root=None, data_list=None):
'''
:param data_root:
:param data_list: the txt file path
:return:
'''
assert split in ['train', 'val', 'test']
image_label_list = []
list_read = open(data_list).readlines()
print("Totally {} samples in {} set.".format(len(list_read), split))
print("Starting Checking image&label pair {} list...".format(split))
for line in list_read:
line = line.strip()
if split == 'test':
image_name = '/root/PycharmProjects/pythonProject/VOCdevkit/VOC2012/JPEGImages/' + line + '.jpg'
label_name = '/root/PycharmProjects/pythonProject/VOCdevkit/VOC2012/SegmentationClass/' + line + '.png'
else:
image_name = '/root/PycharmProjects/pythonProject/VOCdevkit/VOC2012/JPEGImages/' + line + '.jpg'
label_name = '/root/PycharmProjects/pythonProject/VOCdevkit/VOC2012/SegmentationClass/' + line + '.png'
item = (image_name, label_name)
image_label_list.append(item)
print("Checking image&label pair {} list done!".format(split))
return image_label_list
class SemDataset(Dataset):
def __init__(self, split='train', data_root=None, data_list=None, transform=None):
self.split = split
self.data_list = make_dataset(split, data_root, data_list)
self.transform = transform
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
image_path, label_path = self.data_list[index]
image = cv2.imread(image_path, cv2.IMREAD_COLOR) # BGR 3 channel ndarray wiht shape H * W * 3
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # convert cv2 read image from BGR order to RGB order
image = np.float32(image)
label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE) # GRAY 1 channel ndarray with shape H * W
image, label = self.transform(image, label)
return image, label
if __name__ == '__main__':
#SemDataset(split='train', data_root='/root/PycharmProjects/pythonProject/VOCdevkit/VOC2012/ImageSets', data_list='/root/PycharmProjects/pythonProject/VOCdevkit/VOC2012/ImageSets/Segmentation/trainval_aug.txt')
SemDataset(split='test', data_root='/root/PycharmProjects/pythonProject/VOCdevkit/VOC2012/', data_list='/root/PycharmProjects/pythonProject/VOCdevkit/VOC2012/ImageSets/Segmentation/test_aug.txt')