-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhugface_models.py
263 lines (217 loc) · 12.2 KB
/
hugface_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import re, string
from unicodedata import normalize
from nltk.corpus import stopwords
import torch
from pytools import memoize_method
import hugface_utils
from torch import nn
from transformers import (
BertConfig,
BertModel,
BertTokenizer
)
from hugface_layers import CustomBertTranslationHeadModel
def hugface_models():
MODEL_CLASSES = {
"bert": (BertConfig, BertModel, BertTokenizer),
"bert_head": (BertConfig, CustomBertTranslationHeadModel, BertTokenizer),
}
return MODEL_CLASSES
class TransformerRanker(nn.Module):
def __init__(self, args):
super().__init__()
self.model_type = args.model_type.lower()
self.ranker = args.model_ranker
MODEL_CLASSES = hugface_models()
config_class, model_class, tokenizer_class = MODEL_CLASSES[self.model_type]
self.config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
self.config.output_hidden_states = True
self.config.return_dict = True
self.fixed_layer = args.fixed_layer
self.tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, use_fast=False)
self.transformer = model_class.from_pretrained(args.model_name_or_path)
self.cls = nn.Sequential(
nn.Dropout(self.config.hidden_dropout_prob),
nn.Linear(self.config.hidden_size, self.config.num_labels-1)
)
self.collect_stopwords(args.query_lang, args.doc_lang)
def collect_stopwords(self, query_lang, doc_lang):
self.stopwords = {'query':set(), 'document':set()}
if query_lang in stopwords.fileids():
for sw in stopwords.words(query_lang):
self.stopwords['query'].add(self.clean_word(sw))
if doc_lang in stopwords.fileids():
for sw in stopwords.words(doc_lang):
self.stopwords['document'].add(self.clean_word(sw))
def forward(self, **inputs):
raise NotImplementedError
def save(self, path):
state = self.state_dict()
torch.save(state, path)
def load(self, path):
self.load_state_dict(torch.load(path), strict=True)
def clean_word(self, word):
# prepare regex for char filtering
re_print = re.compile('[^%s]' % re.escape(string.printable))
# prepare translation table for removing punctuation
table = str.maketrans('', '', string.punctuation)
# normalize unicode characters
word = normalize('NFKD', word).encode('ascii', 'ignore').decode('utf8')
# convert to lower case
word = word.lower()
# remove punctuation from each token
word = word.translate(table)
# remove non-printable chars form each token
word = re_print.sub('', word)
# remove tokens with numbers in them
return word if word.isalpha() else ''
@memoize_method
def tokenize(self, text, lang):
if self.model_type=='bert' or self.model_type=='xlmroberta':
toks = self.tokenizer.tokenize(text)
else:
toks = self.tokenizer.tokenize(text)
out_toks = self.tokenizer.convert_tokens_to_ids(toks)
return out_toks
@memoize_method
def custom_tokenize(self, text, lang):
sub_index = False
toks = self.tokenizer.tokenize(text)
sub_index = hugface_utils.subwords_index(toks)
sub_index_dict = dict()
for i, v in enumerate(sub_index):
sub_index_dict[v] = sub_index_dict.get(v,[])
sub_index_dict[v].append(i)
words_txt = []
for tok_index in sub_index_dict.values():
words_txt.append(self.tokenizer.convert_tokens_to_string([toks[i] for i in tok_index]))
words_txt = [self.clean_word(w) for w in words_txt]
out_toks = self.tokenizer.convert_tokens_to_ids(toks)
return out_toks, sub_index, words_txt
def vanilla_encode(self, query_tok, query_mask, doc_tok, doc_mask):
BATCH, QLEN = query_tok.shape
DIFF = 3 # = [CLS] and 2x[SEP] -> [CLS] A [SEP] B [SEP]
if self.model_type == 'xlmroberta': # <s> A </s></s> B </s>
DIFF = 4
maxlen = self.config.max_position_embeddings
MAX_DOC_TOK_LEN = maxlen - QLEN - DIFF
doc_toks, sbcount = hugface_utils.subbatch(doc_tok, MAX_DOC_TOK_LEN)
doc_masks, _ = hugface_utils.subbatch(doc_mask, MAX_DOC_TOK_LEN)
query_toks = torch.cat([query_tok] * sbcount, dim=0)
query_masks = torch.cat([query_mask] * sbcount, dim=0)
# special tokens: obtaining ids
cls_tok_id = self.tokenizer.convert_tokens_to_ids(self.tokenizer.cls_token) #self.tokenizer.vocab['[CLS]']
sep_tok_id = self.tokenizer.convert_tokens_to_ids(self.tokenizer.sep_token) #self.tokenizer.vocab['[SEP]']
pad_tok_id = self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token) # 0
CLSS = torch.full_like(query_toks[:, :1], cls_tok_id)
SEPS = torch.full_like(query_toks[:, :1], sep_tok_id)
ONES = torch.ones_like(query_masks[:, :1])
NILS = torch.zeros_like(query_masks[:, :1])
# build input sequences
if self.model_type == 'xlmroberta':
toks = torch.cat([CLSS, query_toks, SEPS, SEPS, doc_toks, SEPS], dim=1)
masks = torch.cat([ONES, query_masks, ONES, ONES, doc_masks, ONES], dim=1)
else:
toks = torch.cat([CLSS, query_toks, SEPS, doc_toks, SEPS], dim=1)
masks = torch.cat([ONES, query_masks, ONES, doc_masks, ONES], dim=1)
toks[toks == -1] = pad_tok_id # replace padding
segment_ids = torch.cat([NILS] * (2 + QLEN) + [ONES] * (1 + doc_toks.shape[1]), dim=1)
return BATCH, toks, masks, segment_ids.long()
def custom_encode(self, query_tok, query_mask, doc_tok, doc_mask, query_subword_index, doc_subword_index, query_words, doc_words, tt, tt_threshold, isPlacebo, norm, device):
BATCH, QLEN = query_tok.shape
DIFF = 3 # = [CLS] and 2x[SEP] -> [CLS] A [SEP] B [SEP]
if self.model_type == 'xlmroberta': # <s> A </s></s> B </s>
DIFF = 4
maxlen = self.config.max_position_embeddings
MAX_DOC_TOK_LEN = maxlen - QLEN - DIFF
doc_toks, sbcount = hugface_utils.subbatch(doc_tok, MAX_DOC_TOK_LEN)
doc_masks, _ = hugface_utils.subbatch(doc_mask, MAX_DOC_TOK_LEN)
doc_subwords_index, _ = hugface_utils.subbatch_sub_index(doc_subword_index, MAX_DOC_TOK_LEN)
maxd = QLEN + 3 + doc_subwords_index.shape[1]
sub_d_words = []
sub_q_words = []
sub_doc_subwords_index = []
for b in range(0, len(doc_subwords_index), BATCH):
for i in range(BATCH):
start, end = doc_subwords_index[i+b][0]-1, doc_subwords_index[i+b][-1]
sub_d_words.append(doc_words[i][start:end].copy())
sub_q_words.append(query_words[i].copy())
sub_doc_subwords_index.append(doc_subwords_index[i+b]-start)
sub_doc_subwords_index = torch.stack(sub_doc_subwords_index, dim=0)
query_toks = torch.cat([query_tok] * sbcount, dim=0)
query_masks = torch.cat([query_mask] * sbcount, dim=0)
query_subwords_index = torch.cat([query_subword_index] * sbcount, dim=0)
clss = torch.zeros_like(query_subwords_index[:, :1])
offset = query_subwords_index[:, -1:] + 1
sub_doc_subword_index_offset = sub_doc_subwords_index + offset
final = sub_doc_subword_index_offset[:, -1:] + 1
sub_qd_subwords_index = torch.cat([clss, query_subwords_index, offset, sub_doc_subword_index_offset, final], dim=1)
if self.ranker in {"custom_words", "custom_simple"}:
ttmat = hugface_utils.query_translator_words(tt, query_subwords_index, sub_q_words, sub_d_words, maxd, tt_threshold).to(device)
else:
ttmat = hugface_utils.query_translator_subwords(tt, query_subwords_index, sub_q_words, sub_d_words, maxd, sub_qd_subwords_index.tolist(), tt_threshold, self.stopwords, isPlacebo, norm).to(device)
# special tokens: obtaining ids
cls_tok_id = self.tokenizer.convert_tokens_to_ids(self.tokenizer.cls_token) #self.tokenizer.vocab['[CLS]']
sep_tok_id = self.tokenizer.convert_tokens_to_ids(self.tokenizer.sep_token) #self.tokenizer.vocab['[SEP]']
pad_tok_id = self.tokenizer.convert_tokens_to_ids(self.tokenizer.pad_token) # 0
CLSS = torch.full_like(query_toks[:, :1], cls_tok_id)
SEPS = torch.full_like(query_toks[:, :1], sep_tok_id)
ONES = torch.ones_like(query_masks[:, :1])
NILS = torch.zeros_like(query_masks[:, :1])
# build input sequences
if self.model_type == 'xlmroberta':
toks = torch.cat([CLSS, query_toks, SEPS, SEPS, doc_toks, SEPS], dim=1)
masks = torch.cat([ONES, query_masks, ONES, ONES, doc_masks, ONES], dim=1)
else:
toks = torch.cat([CLSS, query_toks, SEPS, doc_toks, SEPS], dim=1)
masks = torch.cat([ONES, query_masks, ONES, doc_masks, ONES], dim=1)
toks[toks == -1] = pad_tok_id # replace padding
segment_ids = torch.cat([NILS] * (2 + QLEN) + [ONES] * (1 + doc_toks.shape[1]), dim=1)
return BATCH, ttmat, toks, masks, segment_ids.long(), sub_qd_subwords_index
class VanillaTransformerRanker(TransformerRanker):
def forward(self, query_tok, query_mask, doc_tok, doc_mask):
batch, toks, masks, segment_ids = self.vanilla_encode(query_tok, query_mask, doc_tok, doc_mask)
# execute Transformer model
if self.model_type == 'xlmroberta':
result = self.transformer(input_ids=toks, attention_mask=masks)
else:
result = self.transformer(input_ids=toks, attention_mask=masks, token_type_ids=segment_ids)
# build CLS representation
cls_tokens = result.pooler_output # first token
cls_reps = []
for i in range(cls_tokens.shape[0] // batch):
cls_reps.append(cls_tokens[i*batch:(i+1)*batch])
cls_reps = torch.stack(cls_reps, dim=2).mean(dim=2)
return self.cls(cls_reps)
class CustomTransformerRankerTranslationHead(TransformerRanker):
def forward(self, query_tok, query_mask, doc_tok, doc_mask, query_subword_index, doc_subword_index, query_words, doc_words, tt, tt_threshold, norm, device):
isPlacebo = False
batch, ttmat, toks, masks, segment_ids, _ = self.custom_encode(query_tok, query_mask, doc_tok, doc_mask, query_subword_index, doc_subword_index, query_words, doc_words, tt, tt_threshold, isPlacebo, norm, device)
# execute Transformer model
if self.model_type == 'xlmroberta':
result = self.transformer(input_ids=toks, attention_mask=masks)
else:
result = self.transformer(input_ids=toks, translation_matrix=ttmat, attention_mask=masks, token_type_ids=segment_ids)
# build CLS representation
cls_tokens = result.pooler_output # first token
cls_reps = []
for i in range(cls_tokens.shape[0] // batch):
cls_reps.append(cls_tokens[i*batch:(i+1)*batch])
cls_reps = torch.stack(cls_reps, dim=2).mean(dim=2)
return self.cls(cls_reps)
class CustomTransformerRankerPlaceboHead(TransformerRanker):
def forward(self, query_tok, query_mask, doc_tok, doc_mask, query_subword_index, doc_subword_index, query_words, doc_words, tt, tt_threshold, norm, device):
isPlacebo = True
batch, ttmat, toks, masks, segment_ids, _ = self.custom_encode(query_tok, query_mask, doc_tok, doc_mask, query_subword_index, doc_subword_index, query_words, doc_words, tt, tt_threshold, isPlacebo, norm, device)
# execute Transformer model
if self.model_type == 'xlmroberta':
result = self.transformer(input_ids=toks, attention_mask=masks)
else:
result = self.transformer(input_ids=toks, translation_matrix=ttmat, attention_mask=masks, token_type_ids=segment_ids)
# build CLS representation
cls_tokens = result.pooler_output # first token
cls_reps = []
for i in range(cls_tokens.shape[0] // batch):
cls_reps.append(cls_tokens[i*batch:(i+1)*batch])
cls_reps = torch.stack(cls_reps, dim=2).mean(dim=2)
return self.cls(cls_reps)