-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhugface_utils.py
135 lines (122 loc) · 4.84 KB
/
hugface_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import math
import torch
def subwords_index(subwords):
index = 0
wordpieces = []
for sw in subwords:
if sw[:2] != '##':
index +=1
wordpieces.append(index)
return wordpieces
def subbatch(toks, maxlen):
_, DLEN = toks.shape[:2]
SUBBATCH = math.ceil(DLEN / maxlen)
S = math.ceil(DLEN / SUBBATCH) if SUBBATCH > 0 else 0 # minimize the size given the number of subbatch
if SUBBATCH == 1:
return toks, SUBBATCH
else:
stack = []
for s in range(SUBBATCH):
stack.append(toks[:, s*S:(s+1)*S])
if stack[-1].shape[1] != S:
nulls = torch.zeros_like(toks[:, :S - stack[-1].shape[1]])
stack[-1] = torch.cat([stack[-1], nulls], dim=1)
return torch.cat(stack, dim=0), SUBBATCH
def subbatch_sub_index(toks, maxlen):
_, DLEN = toks.shape[:2]
SUBBATCH = math.ceil(DLEN / maxlen)
S = math.ceil(DLEN / SUBBATCH) if SUBBATCH > 0 else 0 # minimize the size given the number of subbatch
if SUBBATCH == 1:
return toks, SUBBATCH
else:
stack = []
for s in range(SUBBATCH):
stack.append(toks[:, s*S:(s+1)*S])
if stack[-1].shape[1] != S:
nulls = []
for chunk in stack[-1]:
start = chunk[-1]+1
end = start + S - len(chunk)
nulls.append(torch.arange(start, end).long().to(toks.device))
nulls = torch.stack(nulls, dim=0)
stack[-1] = torch.cat([stack[-1], nulls], dim=1)
return torch.cat(stack, dim=0), SUBBATCH
def un_subbatch(embed, toks, maxlen):
BATCH, DLEN = toks.shape[:2]
SUBBATCH = math.ceil(DLEN / maxlen)
if SUBBATCH == 1:
return embed
else:
embed_stack = []
for b in range(SUBBATCH):
embed_stack.append(embed[b*BATCH:(b+1)*BATCH])
embed = torch.cat(embed_stack, dim=1)
embed = embed[:, :DLEN]
return embed
def getTransTableDict(dir_tt):
translation_tb = dict()
with open(dir_tt, "r") as trfile:
for row in trfile:
tokens = row.split(" ")
source = tokens[0]
target = tokens[1]
prob = float(tokens[2])
if source not in translation_tb:
translation_tb[source] = dict()
translation_tb[source][target] = prob
return translation_tb
def query_translator_subwords(tt, q_subwords_index, q_words, d_words, maxd, qd_subwords_index, threshold, stopwords, is_placebo=False, reduction="norm"):
ttmat = []
for q_index, q_words_clean, d_words_clean, qd_index in zip(q_subwords_index, q_words, d_words, qd_subwords_index):
qd_index_dict = {}
for i, pos in enumerate(qd_index):
if pos in qd_index_dict:
qd_index_dict[pos].append(i)
else:
qd_index_dict[pos] = [i]
q_words_clean_dict = {}
for i, w in enumerate(q_words_clean):
if w == '' or w == 'unk':
continue
if w in q_words_clean_dict:
q_words_clean_dict[w] += qd_index_dict[i+1].copy()
else:
q_words_clean_dict[w] = qd_index_dict[i+1].copy()
d_words_clean_dict = {}
offset = max(q_index.tolist()) + 2
for i, w in enumerate(d_words_clean):
if w == '' or w == 'unk':
continue
if w in d_words_clean_dict:
d_words_clean_dict[w] += qd_index_dict[i+offset].copy()
else:
d_words_clean_dict[w] = qd_index_dict[i+offset].copy()
wmat = torch.eye(maxd, requires_grad=False)
if not is_placebo:
for i, pos in qd_index_dict.items():
for p in pos:
wmat[p][pos] = 1.0
for qw, qlocs in q_words_clean_dict.items():
if qw in stopwords['query']:
continue
# translations
trans = tt.get(qw, {})
if qw not in trans:
trans.update({qw:1.0})
for t in trans:
#if trans[t] > threshold:
if t not in stopwords['document'] and trans[t] > threshold:
dlocs = d_words_clean_dict.get(t, [])
if dlocs != []:
for qloc in qlocs:
wmat[qloc][dlocs] = trans[t]
for dloc in dlocs:
wmat[dloc][qlocs] = trans[t]
if reduction == 'norm':
wmat = torch.div(wmat, wmat.sum(dim=1, keepdim=True))
if reduction == 'softmax':
wmat = torch.nn.functional.softmax(wmat, dim=1)
wmat = wmat.unsqueeze(0)
ttmat.append(wmat)
ttmat = torch.cat(ttmat, dim=0)
return ttmat