-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.md
601 lines (548 loc) · 22.5 KB
/
README.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
<!-- README.md is generated from README.Rmd. Please edit that file -->
# RNA-seq Analysis Workflow with DESeq in R
**Author**: Xiurui Zhu<br /> **Modified**: 2021-10-28 09:57:36<br />
**Compiled**: 2021-10-28 09:57:42
## Introduction
Next-generation sequencing (NGS) is a powerful tool for analyzing gene
sequences. There are a couple of packages that help to process NGS data,
including sequence alignment data, gene annotation, experimental
metadata and significance analysis. In this file, we will go through
this process according to [a tutorial for
RNA-seq](https://learn.gencore.bio.nyu.edu/rna-seq-analysis/deseq/) in
R.
## Methods
### Data preparation
To facilitate the analyses in the workflow, we need to load the
following packages: `tidyverse`, `magrittr`, `rlang`, `Rsamtools`,
`GenomicFeatures`, `GenomicAlignments`, `DESeq`, `DESeq2`, `GOstats`,
`GO.db`, `Category`, `org.At.tair.db` and `ComplexHeatmap`.
``` r
# Define a function to check, install (if necessary) and load packages
check_packages <- function(pkg_name,
repo = c("cran", "github", "Bioconductor"),
repo_path) {
repo <- match.arg(repo)
# Load installed packages
inst_packages <- installed.packages()
if (pkg_name %in% inst_packages == FALSE) {
cat("* Installing: ", pkg_name, ", repo = ", repo, "\n", sep = "")
switch(repo,
cran = install.packages(pkg_name),
github = {
if ("devtools" %in% inst_packages == FALSE) {
install.packages("devtools")
}
devtools::install_github(repo_path)
},
Bioconductor = {
if ("BiocManager" %in% inst_packages == FALSE) {
install.packages("BiocManager")
}
BiocManager::install(pkg_name)
})
} else {
cat("* Package already installed: ", pkg_name, "\n", sep = "")
}
suppressPackageStartupMessages(
library(pkg_name, character.only = TRUE)
)
}
# CRAN packages
check_packages("tidyverse", repo = "cran")
purrr::walk(.x = c("magrittr", "rlang"),
.f = check_packages, repo = "cran")
purrr::walk(.x = c("Rsamtools", "GenomicFeatures",
"GenomicAlignments", "DESeq",
"DESeq2", "GOstats", "GO.db",
"Category", "org.At.tair.db",
"ComplexHeatmap"),
.f = check_packages, repo = "Bioconductor")
#> * Package already installed: tidyverse
#> * Package already installed: magrittr
#> * Package already installed: rlang
#> * Package already installed: Rsamtools
#> * Package already installed: GenomicFeatures
#> * Package already installed: GenomicAlignments
#> * Package already installed: DESeq
#> * Package already installed: DESeq2
#> * Package already installed: GOstats
#> * Package already installed: GO.db
#> * Package already installed: Category
#> * Package already installed: org.At.tair.db
#> * Package already installed: ComplexHeatmap
```
Alignment data from 4 “bam” files were loaded as pointers to data on
disk.
``` r
bam_files <- list.files("data", pattern = "\\.bam$", full.names = TRUE) %>%
Rsamtools::BamFileList()
print(bam_files)
#> BamFileList of length 4
#> names(4): KCL1_dedup_sorted.bam KCL2_dedup_sorted.bam NO31_dedup_sorted.bam NO32_dedup_sorted.bam
```
Then, a “gtf” annotation file was loaded to locate genomic features and
exons were grouped by genes.
``` r
tx_db <- list.files("data", pattern = "\\.gtf$", full.names = TRUE) %>%
GenomicFeatures::makeTxDbFromGFF(format="gtf")
#> Import genomic features from the file as a GRanges object ... OK
#> Prepare the 'metadata' data frame ... OK
#> Make the TxDb object ... OK
print(tx_db)
#> TxDb object:
#> # Db type: TxDb
#> # Supporting package: GenomicFeatures
#> # Data source: data/Arabidopsis.gtf
#> # Organism: NA
#> # Taxonomy ID: NA
#> # miRBase build ID: NA
#> # Genome: NA
#> # Nb of transcripts: 41671
#> # Db created by: GenomicFeatures package from Bioconductor
#> # Creation time: 2021-10-28 09:58:58 +0800 (Thu, 28 Oct 2021)
#> # GenomicFeatures version at creation time: 1.40.1
#> # RSQLite version at creation time: 2.2.8
#> # DBSCHEMAVERSION: 1.2
exon_by_gene <- tx_db %>%
GenomicFeatures::exonsBy(by = "gene")
print(exon_by_gene)
#> GRangesList object of length 33610:
#> $AT1G01010
#> GRanges object with 6 ranges and 2 metadata columns:
#> seqnames ranges strand | exon_id exon_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] Chr1 3631-3913 + | 1 <NA>
#> [2] Chr1 3996-4276 + | 2 <NA>
#> [3] Chr1 4486-4605 + | 3 <NA>
#> [4] Chr1 4706-5095 + | 4 <NA>
#> [5] Chr1 5174-5326 + | 5 <NA>
#> [6] Chr1 5439-5899 + | 6 <NA>
#> -------
#> seqinfo: 7 sequences (2 circular) from an unspecified genome; no seqlengths
#>
#> $AT1G01020
#> GRanges object with 12 ranges and 2 metadata columns:
#> seqnames ranges strand | exon_id exon_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] Chr1 5928-6263 - | 21880 <NA>
#> [2] Chr1 6437-7069 - | 21881 <NA>
#> [3] Chr1 6790-7069 - | 21882 <NA>
#> [4] Chr1 7157-7232 - | 21883 <NA>
#> [5] Chr1 7157-7450 - | 21884 <NA>
#> ... ... ... ... . ... ...
#> [8] Chr1 7762-7835 - | 21887 <NA>
#> [9] Chr1 7942-7987 - | 21888 <NA>
#> [10] Chr1 8236-8325 - | 21889 <NA>
#> [11] Chr1 8417-8464 - | 21890 <NA>
#> [12] Chr1 8571-8737 - | 21891 <NA>
#> -------
#> seqinfo: 7 sequences (2 circular) from an unspecified genome; no seqlengths
#>
#> $AT1G01030
#> GRanges object with 2 ranges and 2 metadata columns:
#> seqnames ranges strand | exon_id exon_name
#> <Rle> <IRanges> <Rle> | <integer> <character>
#> [1] Chr1 11649-13173 - | 21892 <NA>
#> [2] Chr1 13335-13714 - | 21893 <NA>
#> -------
#> seqinfo: 7 sequences (2 circular) from an unspecified genome; no seqlengths
#>
#> ...
#> <33607 more elements>
```
Finally, experimental metadata were loaded for a description of the
dataset.
``` r
exp_design <- file.path("data", "expdesign.txt") %>%
read.csv(row.names = 1L, sep = ",")
print(exp_design)
#> condition
#> KCL1_dedup_sorted.bam untreated
#> KCL2_dedup_sorted.bam untreated
#> NO31_dedup_sorted.bam treated
#> NO32_dedup_sorted.bam treated
```
### Read counting and filtering
Reads were first counted with exons grouped by genes.
``` r
summ_exp <- GenomicAlignments::summarizeOverlaps(
features = exon_by_gene,
reads = bam_files,
mode = "Union",
singleEnd = TRUE,
ignore.strand = TRUE
)
print(summ_exp)
#> class: RangedSummarizedExperiment
#> dim: 33610 4
#> metadata(0):
#> assays(1): counts
#> rownames(33610): AT1G01010 AT1G01020 ... ATMG01400 ATMG01410
#> rowData names(0):
#> colnames(4): KCL1_dedup_sorted.bam KCL2_dedup_sorted.bam
#> NO31_dedup_sorted.bam NO32_dedup_sorted.bam
#> colData names(0):
sam_count <- SummarizedExperiment::assay(summ_exp)
dim(sam_count)
#> [1] 33610 4
```
Median counts per condition in experimental metadata were counted and
maximal median counts \< 10 were removed.
``` r
count_thresh <- 10L
med_count <- sam_count %>%
as.data.frame() %>%
tibble::rownames_to_column("Feature_Name") %>%
tidyr::pivot_longer(cols = !c("Feature_Name"),
names_to = "File_Name",
values_to = "value") %>%
dplyr::inner_join(
exp_design %>%
tibble::rownames_to_column("File_Name"),
by = "File_Name"
) %>%
dplyr::group_by(Feature_Name, condition) %>%
dplyr::summarize(med_value = median(value, na.rm = TRUE),
.groups = "drop") %>%
tidyr::pivot_wider(id_cols = "Feature_Name",
names_from = "condition",
values_from = "med_value") %>%
tibble::column_to_rownames("Feature_Name") %>%
as.matrix()
max_med_count <- med_count %>%
as.data.frame() %>%
tibble::rownames_to_column("Feature_Name") %>%
dplyr::mutate(max_count = pmax(!!!dplyr::syms(colnames(med_count)),
na.rm = TRUE)) %>%
dplyr::select(Feature_Name, max_count) %>%
tibble::deframe()
sam_count_filter <- sam_count[
names(max_med_count)[max_med_count >= count_thresh],
1:ncol(sam_count)
]
dim(sam_count_filter)
#> [1] 11422 4
```
## Results
Statistical analyses were carried out with `DESeq` package.
### Exploration of differentially expressed genes
A count dataset (data container) was first constructed to analyze data
with `DESeq`. Then, size factors and variations were estimated.
``` r
count_deseq <- DESeq::newCountDataSet(
countData = sam_count_filter,
conditions = exp_design %>%
tibble::rownames_to_column("File_Name") %>%
tibble::deframe() %>%
as.factor() %>%
`[`(colnames(sam_count_filter))
) %>%
DESeq::estimateSizeFactors() %>%
DESeq::estimateDispersions()
print(count_deseq)
#> CountDataSet (storageMode: environment)
#> assayData: 11422 features, 4 samples
#> element names: counts
#> protocolData: none
#> phenoData
#> sampleNames: KCL1_dedup_sorted.bam KCL2_dedup_sorted.bam
#> NO31_dedup_sorted.bam NO32_dedup_sorted.bam
#> varLabels: sizeFactor condition
#> varMetadata: labelDescription
#> featureData
#> featureNames: AT1G01010 AT1G01040 ... AT5G67630 (11422 total)
#> fvarLabels: disp_pooled
#> fvarMetadata: labelDescription
#> experimentData: use 'experimentData(object)'
#> Annotation:
DESeq::plotDispEsts(count_deseq)
```
<img src="README_files/constr-deseq-dataset-1.png" width="100%" />
Next, univariate analysis was performed between the two groups define in
`exp_design` and a total of 208 significant genes were discovered.
``` r
count_univar <- count_deseq %>%
DESeq::nbinomTest("untreated", "treated")
head(count_univar)
#> id baseMean baseMeanA baseMeanB foldChange log2FoldChange pval
#> 1 AT1G01010 21.45700 27.32565 15.58834 0.5704655 -0.8097885 0.1238439
#> 2 AT1G01040 44.92871 39.63235 50.22508 1.2672748 0.3417294 0.3625881
#> 3 AT1G01050 14.11043 12.85400 15.36686 1.1954923 0.2576048 0.7524904
#> 4 AT1G01060 63.99045 71.62446 56.35645 0.7868324 -0.3458717 0.4788409
#> 5 AT1G01090 92.24328 80.91875 103.56782 1.2798990 0.3560299 0.2472544
#> 6 AT1G01100 180.46426 153.25272 207.67579 1.3551197 0.4384203 0.1022170
#> padj
#> 1 1
#> 2 1
#> 3 1
#> 4 1
#> 5 1
#> 6 1
sig_count <- sum(count_univar[["padj"]] < 0.05, na.rm=T)
print(sig_count)
#> [1] 208
```
### MA plot
MA plot was used to indicate from the univariate results the required
fold change for a gene to be significant against its average count.
``` r
DESeq::plotMA(count_univar, ylim = c(-5, 5))
```
<img src="README_files/deseq-MA-plot-1.png" width="100%" />
### Significant genes
Significant genes were derived from the univariate results.
``` r
sig_gene <- c(up = 1, down = -1) %>%
purrr::map(~ {
count_univar[count_univar[["padj"]] < 0.1 &
abs(count_univar[["log2FoldChange"]]) > 1 &
sign(count_univar[["log2FoldChange"]]) == .x, ]
})
tibble::glimpse(sig_gene)
#> List of 2
#> $ up :'data.frame': 204 obs. of 8 variables:
#> ..$ id : chr [1:204] "AT1G03850" "AT1G07150" "AT1G08090" "AT1G08100" ...
#> ..$ baseMean : num [1:204] 33.3 28 400.4 130.5 44.5 ...
#> ..$ baseMeanA : num [1:204] 15.09 4.04 81.96 24.05 19.16 ...
#> ..$ baseMeanB : num [1:204] 51.5 51.9 718.8 237 69.8 ...
#> ..$ foldChange : num [1:204] 3.41 12.83 8.77 9.85 3.64 ...
#> ..$ log2FoldChange: num [1:204] 1.77 3.68 3.13 3.3 1.87 ...
#> ..$ pval : num [1:204] 5.30e-05 3.34e-04 3.94e-06 4.78e-09 6.30e-06 ...
#> ..$ padj : num [1:204] 5.06e-03 2.33e-02 6.25e-04 1.48e-06 8.89e-04 ...
#> $ down:'data.frame': 33 obs. of 8 variables:
#> ..$ id : chr [1:33] "AT1G13110" "AT1G27030" "AT1G29050" "AT1G55760" ...
#> ..$ baseMean : num [1:33] 54.8 56.7 79.5 19 61.7 ...
#> ..$ baseMeanA : num [1:33] 76.6 79.8 109.6 33.2 110.3 ...
#> ..$ baseMeanB : num [1:33] 33.07 33.63 49.45 4.79 13.14 ...
#> ..$ foldChange : num [1:33] 0.432 0.421 0.451 0.144 0.119 ...
#> ..$ log2FoldChange: num [1:33] -1.21 -1.25 -1.15 -2.8 -3.07 ...
#> ..$ pval : num [1:33] 1.09e-03 1.02e-03 6.33e-04 2.25e-05 1.66e-04 ...
#> ..$ padj : num [1:33] 0.05763 0.05464 0.03745 0.00259 0.01306 ...
sig_gene_comb <- dplyr::bind_rows(sig_gene)
head(sig_gene_comb)
#> id baseMean baseMeanA baseMeanB foldChange log2FoldChange
#> 1 AT1G03850 33.27369 15.093992 51.45338 3.408865 1.769291
#> 2 AT1G07150 27.96515 4.044117 51.88618 12.830039 3.681454
#> 3 AT1G08090 400.35951 81.960358 718.75867 8.769589 3.132509
#> 4 AT1G08100 130.50403 24.051723 236.95633 9.851948 3.300409
#> 5 AT1G08650 44.49139 19.162379 69.82040 3.643618 1.865372
#> 6 AT1G11655 8.48047 1.704820 15.25612 8.948818 3.161697
#> pval padj
#> 1 5.300576e-05 5.058579e-03
#> 2 3.339807e-04 2.334359e-02
#> 3 3.937001e-06 6.245615e-04
#> 4 4.781152e-09 1.475954e-06
#> 5 6.301214e-06 8.885490e-04
#> 6 6.813422e-04 3.930450e-02
```
### Gene annotations
The functions of genes were annotated with data from [an open-source
“tair”
repository](https://www.arabidopsis.org/download/index-auto.jsp%3Fdir%3D%252Fdownload_files%252FGenes%252FTAIR10_genome_release).
Transcript identifiers ending with a dot and a number were removed for
matching.
``` r
gene_desc <- list.files("data",
pattern = "^gene_description",
full.names = TRUE) %>%
readr::read_delim(col_types = readr::cols(),
delim = "\t",
col_names = NULL) %>%
dplyr::mutate_at("X1",
~ .x %>%
stringr::str_replace("\\.[0-9]$", "")) %>%
dplyr::semi_join(
sig_gene_comb,
by = c("X1" = "id")
) %>%
`colnames<-`(c("id", "class", "annotation", "function", "detail"))
head(gene_desc[c("id", "annotation")])
#> # A tibble: 6 x 2
#> id annotation
#> <chr> <chr>
#> 1 AT1G49860 glutathione S-transferase (class phi) 14
#> 2 AT1G07150 mitogen-activated protein kinase kinase kinase 13
#> 3 AT1G22500 RING/U-box superfamily protein
#> 4 AT1G49450 Transducin/WD40 repeat-like superfamily protein
#> 5 AT1G19050 response regulator 7
#> 6 AT1G14340 RNA-binding (RRM/RBD/RNP motifs) family protein
```
### Go-term enrichment analysis
Go-term enrichment analysis was first performed with the significant
genes from filtered count matrix.
``` r
go_params <- new(
"GOHyperGParams",
geneIds = sig_gene_comb[["id"]],
universeGeneIds = rownames(sam_count_filter),
annotation = "org.At.tair",
ontology = "BP",
pvalueCutoff = 0.001,
conditional = TRUE,
testDirection = "over"
)
print(go_params)
#> A GOHyperGParams instance
#> category: GO
#> annotation: org.At.tair
over_rep <- Category::hyperGTest(go_params)
print(summary(over_rep)[, c(1L, 2L, 5L, 6L, 7L)])
#> GOBPID Pvalue Count Size
#> 1 GO:0010167 1.596988e-06 6 18
#> 2 GO:0042221 1.810717e-05 64 1774
#> 3 GO:0009051 4.358056e-05 4 10
#> 4 GO:0006739 4.983977e-05 6 31
#> 5 GO:0006820 6.187222e-05 13 163
#> 6 GO:0042128 6.730251e-05 4 11
#> 7 GO:0055114 1.465420e-04 20 363
#> 8 GO:0019676 2.016793e-04 3 6
#> 9 GO:2001057 2.597026e-04 4 15
#> 10 GO:0009735 4.465533e-04 7 63
#> 11 GO:0046942 4.921617e-04 7 64
#> 12 GO:0006082 5.310063e-04 29 688
#> 13 GO:0016052 5.379109e-04 9 106
#> 14 GO:0006091 6.283807e-04 13 206
#> 15 GO:0001666 8.751107e-04 12 187
#> Term
#> 1 response to nitrate
#> 2 response to chemical
#> 3 pentose-phosphate shunt, oxidative branch
#> 4 NADP metabolic process
#> 5 anion transport
#> 6 nitrate assimilation
#> 7 oxidation-reduction process
#> 8 ammonia assimilation cycle
#> 9 reactive nitrogen species metabolic process
#> 10 response to cytokinin
#> 11 carboxylic acid transport
#> 12 organic acid metabolic process
#> 13 carbohydrate catabolic process
#> 14 generation of precursor metabolites and energy
#> 15 response to hypoxia
```
### Heatmap and hierarchical clustering
The `rlog`-normalized count matrix (significant genes only) was
visualized with heatmap.
``` r
sig_heatmap_data <- sam_count_filter %>%
{
`rownames<-`(
DESeq2::rlog(., blind = FALSE),
rownames(.)
)
} %>%
`[`(sig_gene_comb[["id"]], 1:ncol(.))
sig_heatmap <- sig_heatmap_data %>%
{
`colnames<-`(
apply(., MARGIN = 1L, scale) %>%
t(),
colnames(.)
)
} %>%
ComplexHeatmap::Heatmap(
col = circlize::colorRamp2(c(-2, 0, 2),
c("#00FF00", "#000000", "#FF0000")),
name = "Value",
cluster_rows = TRUE,
cluster_columns = TRUE,
clustering_method_rows = "average",
clustering_method_columns = "average",
clustering_distance_rows = function(x) {
as.dist(1 - cor(t(x), method = "pearson"))
},
clustering_distance_columns = function(x) {
as.dist(1 - cor(t(x), method = "pearson"))
},
row_names_gp = grid::gpar(fontsize = 4),
column_names_gp = grid::gpar(fontsize = 8),
column_names_rot = 0,
column_names_centered = TRUE,
heatmap_width = grid::unit(1, "native"),
heatmap_height = grid::unit(2, "native")
)
ComplexHeatmap::draw(sig_heatmap)
```
<img src="README_files/sig-gene-heatmap-1.png" width="100%" />
## Conclusion
In this workflow, we first prepared RNA-seq data from aligned “bam”
files and turned the dataset into a count matrix with filtered gene
reads. Then differentiating genes were discovered by univariate analysis
with adjusted p-values and fold changes. Finally, significant genes went
through GO enrichment analysis and the results were visualized with
heatmaps.
## Session info
This file was compiled with the following packages and versions:
``` r
utils::sessionInfo()
#> R version 4.0.5 (2021-03-31)
#> Platform: x86_64-w64-mingw32/x64 (64-bit)
#> Running under: Windows 10 x64 (build 19042)
#>
#> Matrix products: default
#>
#> locale:
#> [1] LC_COLLATE=Chinese (Simplified)_China.936
#> [2] LC_CTYPE=Chinese (Simplified)_China.936
#> [3] LC_MONETARY=Chinese (Simplified)_China.936
#> [4] LC_NUMERIC=C
#> [5] LC_TIME=Chinese (Simplified)_China.936
#>
#> attached base packages:
#> [1] grid stats4 parallel stats graphics grDevices utils
#> [8] datasets methods base
#>
#> other attached packages:
#> [1] ComplexHeatmap_2.4.3 org.At.tair.db_3.11.4
#> [3] GO.db_3.11.4 GOstats_2.54.0
#> [5] graph_1.66.0 Category_2.54.0
#> [7] Matrix_1.3-2 DESeq2_1.28.1
#> [9] DESeq_1.39.0 lattice_0.20-41
#> [11] locfit_1.5-9.4 GenomicAlignments_1.24.0
#> [13] SummarizedExperiment_1.18.2 DelayedArray_0.14.1
#> [15] matrixStats_0.56.0 GenomicFeatures_1.40.1
#> [17] AnnotationDbi_1.50.3 Biobase_2.48.0
#> [19] Rsamtools_2.4.0 Biostrings_2.56.0
#> [21] XVector_0.28.0 GenomicRanges_1.40.0
#> [23] GenomeInfoDb_1.24.2 IRanges_2.22.2
#> [25] S4Vectors_0.26.1 BiocGenerics_0.34.0
#> [27] rlang_0.4.11 magrittr_2.0.1
#> [29] forcats_0.5.1 stringr_1.4.0
#> [31] dplyr_1.0.7 purrr_0.3.4
#> [33] readr_2.0.1 tidyr_1.1.3
#> [35] tibble_3.1.3 ggplot2_3.3.5
#> [37] tidyverse_1.3.1
#>
#> loaded via a namespace (and not attached):
#> [1] colorspace_1.4-1 rjson_0.2.20 ellipsis_0.3.2
#> [4] circlize_0.4.13 GlobalOptions_0.1.2 fs_1.5.0
#> [7] clue_0.3-60 rstudioapi_0.13 bit64_4.0.5
#> [10] fansi_0.4.2 lubridate_1.7.10 xml2_1.3.2
#> [13] splines_4.0.5 cachem_1.0.4 geneplotter_1.66.0
#> [16] knitr_1.29 jsonlite_1.7.2 broom_0.7.9
#> [19] annotate_1.66.0 cluster_2.1.1 dbplyr_2.1.1
#> [22] png_0.1-7 compiler_4.0.5 httr_1.4.2
#> [25] backports_1.1.8 assertthat_0.2.1 fastmap_1.0.1
#> [28] cli_3.0.1 htmltools_0.5.0 prettyunits_1.1.1
#> [31] tools_4.0.5 gtable_0.3.0 glue_1.4.2
#> [34] GenomeInfoDbData_1.2.3 rappdirs_0.3.3 Rcpp_1.0.7
#> [37] cellranger_1.1.0 vctrs_0.3.8 rtracklayer_1.48.0
#> [40] xfun_0.15 rvest_1.0.1 lifecycle_1.0.0
#> [43] XML_3.99-0.4 zlibbioc_1.34.0 scales_1.1.1
#> [46] vroom_1.5.4 hms_1.1.0 RBGL_1.64.0
#> [49] RColorBrewer_1.1-2 yaml_2.2.1 curl_4.3
#> [52] memoise_2.0.0 biomaRt_2.44.4 stringi_1.4.6
#> [55] RSQLite_2.2.8 genefilter_1.70.0 BiocParallel_1.22.0
#> [58] shape_1.4.5 pkgconfig_2.0.3 bitops_1.0-6
#> [61] evaluate_0.14 bit_4.0.4 tidyselect_1.1.0
#> [64] AnnotationForge_1.30.1 GSEABase_1.50.1 R6_2.4.1
#> [67] snow_0.4-3 generics_0.1.0 DBI_1.1.0
#> [70] pillar_1.6.2 haven_2.4.3 withr_2.4.1
#> [73] survival_3.2-10 RCurl_1.98-1.2 modelr_0.1.8
#> [76] crayon_1.4.1 utf8_1.1.4 BiocFileCache_1.12.1
#> [79] tzdb_0.1.2 rmarkdown_2.3 GetoptLong_1.0.5
#> [82] progress_1.2.2 readxl_1.3.1 Rgraphviz_2.32.0
#> [85] blob_1.2.1 reprex_2.0.1 digest_0.6.25
#> [88] xtable_1.8-4 openssl_1.4.2 munsell_0.5.0
#> [91] askpass_1.1
```