-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathindex.html
1124 lines (1063 loc) · 85.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<title>Zipkin Lab Code Archive</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Zipkin Lab with design template from the MSL team"/>
<!-- STYLES -->
<link href='https://fonts.googleapis.com/css?family=Fira+Sans:400,400italic,500,500italic,700' rel='stylesheet' type='text/css'>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css">
<link rel="stylesheet" href="assets/css/style.css">
<link rel="icon" type="image/ico" href="assets/images/code.ico">
<!-- JS -->
<script src="https://code.jquery.com/jquery-2.1.4.min.js" type="text/javascript" charset="utf-8"></script>
<script src="assets/javascript/script.js" type="text/javascript" charset="utf-8"></script>
<script src="assets/javascript/table.js" type="text/javascript" charset="utf-8"></script>
</head>
<body>
<!-- SIDE BAR NAVIGATION -->
<aside>
<div class="image">
<img src="assets/images/science-fox_violeta.svg">
</div>
<nav>
<h4><a class="selected" href="#about">About</a></h4>
<br>
<h4><a href="#dataintegration">Data integration models</a></h4>
<br>
<h4><a href="#icm">Integrated community models</a></h4>
<br>
<h4><a href="#unmarked">Unmarked population models</a></h4>
<br>
<h4><a href="#community">Community analyses</a></h4>
<br>
<h4><a href="#other">Other modeling projects</a></h4>
<br>
<h4><a href="#outreach">Outreach activites</a></h4>
<br>
<h4><a href="#more">More information</a></h4>
</nav>
</aside>
<!-- BODY TEXT -->
<article>
<div class="logo">
</div>
<!-- TITLE -->
<h1 id="about">Zipkin Lab Code Archive</h1>
<p>
<h3><em>Note: this website is a living document. Projects will be added once the associated repos are complete (or near complete).
For projects in development, consult our <a href="https://github.com/zipkinlab">Github organization</a> and the lead
author's profile. You can watch our progress on the website
from <a href="https://github.com/zipkinlab/zipkinlab.github.io">this repo.</a> Contact a study's lead author for additional details.
</p>
<br></em></h3>
<!-- META INFO -->
<div class="meta-information">
<!-- SCHEDULE -->
<h2>About</h2> <p class="summary">
<a href="https://zipkinlab.org">Our lab</a> develops mathematical and statistical models to study the distribution and demography of populations and communities. We work on a range of basic and applied problems and a variety of taxa including insects, birds, fish, amphibians, and mammals.
</p>
</div>
<div class="image">
<img src="assets/images/photobar.png" alt="yeah bar" height="170" width="770">
</div>
<br><br><br>
<!-- Project -->
<h2 id="dataintegration">Data integration models</h2>
<p> Population data are often collected by different sources, in different locations, or on different life stages. We are developing and applying novel techniques for integrating multiple data types to estimate the distribution, abundance, and dynamics of populations and predict future trajectories. </p>
<p><h3> <em><a href="#dataintegration2024F">Farr_etal_2024_MEE</a></em> |<em><a href="#dataintegration2023D">Davis_etal_2023_BioCons</a></em> | <em><a href="#dataintegration2022Z">Zylstra_etal_2022_GCB</a></em> | <em><a href="#dataintegration2021D">Doser_etal_2021_MEE</a></em> | <em><a href="#dataintegration2020F">Farr_etal_2021_Ecol</a></em> | <em><a href="#dataintegration2021Z">Zylstra_etal_2021_NEE</a></em> | <em><a href="#dataintegration2019S2">Saunders_etal_2019_PNAS</a></em> | <em><a href="#dataintegration2019S">Saunders_etal_2019_Ecol</a></em> | <em><a href="#dataintegration2018S">Saunders_etal_2018_JAE</a></em> | <em><a href="#dataintegration2017Z">Zipkin_etal_2017_Ecol</a></em></h3></p>
<br><br>
<h3 id="dataintegration2024F">Farr_etal_2024_MEE</h3>
<section class="example">
<section class="title">
<h1>Overcoming data gaps using integrated models to estimate migratory species’ dynamics during cryptic periods of the annual cycle</h1>
<img class="modal-img" src="assets/images/Farr_etal_2024_MEE.png" alt="Farr et al. 2024" height = "194" width="200" style="background-color:white;" >
<div class="modal" id="Farr et al. 2024">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/farrmt">Farr M.T.</a>, <a href="https://github.com/ezylstra">Zylstra E.R.</a>, Ries L., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2024) Overcoming data gaps using integrated models to estimate migratory species’ dynamics during cryptic periods of the annual cycle. <em>Methods in Ecology and Evolution</em>. <a href=https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.14282>DOI: 10.1111/2041-210X.14282</a>
</p>
<p>
<strong>Abstract</strong> - Environmental factors affect the population dynamics of migratory species throughout their annual cycles. However, identifying the spatiotemporal drivers of migratory species' abundances is difficult because of extensive gaps in monitoring data. Additionally, data for migratory species are often fragmented across multiple monitoring programs. We developed an integrated model that incorporates unstructured data during time periods and spatial locations when structured data are unavailable. Our integrated model can estimate population abundance at broad spatiotemporal extents despite structured data gaps during the annual cycle by leveraging opportunistic data.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Farr_etal_2024_MEE">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2023D">Davis_etal_2023_BioCons</h3>
<section class="example">
<section class="title">
<h1>Breeding season management is unlikely to improve population viability of a data-deficient migratory species in decline</h1>
<img class="modal-img" src="assets/images/Davis_BioCons_2023.png" alt="Davis et al. 2023" width="200" style="background-color:white;" >
<div class="modal" id="Davis et al. 2023">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/davisk93">Davis K.L.</a>, <a href ="https://github.com/saund123">Saunders S.P.</a>, Beilke S., Ford E.R., Fuller J., Landgraf A., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2023) Breeding season management is unlikely to improve population viability of a data-deficient migratory species in decline. <em>Biological Conservation</em>. <a href=https://www-sciencedirect-com.proxy2.cl.msu.edu/science/article/pii/S0006320723002057>DOI: 10.1016/j.biocon.2023.110104</a>
</p>
<p>
<strong>Abstract</strong> - We used a coupled integrated population model-Bayesian population viability analysis to estimate demographic rates and population viability within the context of climatic and management-related changes for a data-deficient, declining population of black terns. We found that current conservation efforts during the breeding season are unlikely to reverse ongoing declines. Rather, interventions aimed at increasing adult survival are most likely to reduce quasi-extinction probability compared to management targeting other rates. Our results highlight the importance of enhanced monitoring and management efforts for migratory species during non-breeding periods.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Davis_etal_2023_BioCons">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2022Z">Zylstra_etal_2022_GCB</h3>
<section class="example">
<section class="title">
<h1>Multi-season climate projections forecast declines in migratory monarch butterflies</h1>
<img class="modal-img" src="assets/images/Zylstra_2022_GCB.png" alt="Zylstra et al. 2022" height="250" width="180">
<div class="modal" id="Zylstra et al. 2022">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/ezylstra">Zylstra E.R.</a>, Neupane N., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2022) Multi-season climate projections forecast declines in migratory monarch butterflies. <em>Global Change Biology</em>. <a href=https://onlinelibrary-wiley-com.proxy2.cl.msu.edu/doi/10.1111/gcb.16349>DOI: 10.1111/gcb.16349</a>
</p>
<p>
<strong>Abstract</strong> - We combined a model for the eastern monarch population with climate projections to evaluate how monarchs are likely to respond to a range of potential scenarios over the next century. Our results reveal that forecasted changes in breeding-season climate are likely to lead to decreases in the size of the overwintering monarch population and shifts in the summer distribution of monarchs. Although climate uncertainties dominate long-term population forecasts, near-term forecasts can be improved by collecting targeted data to better understand relationships between climate variables and local monarch abundance.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Zylstra_etal_2022_GCB">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2021D">Doser_etal_2021_MEE</h3>
<section class="example">
<section class="title">
<h1>Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance</h1>
<img class="modal-img" src="assets/images/Doser_2021_MEE.png" alt="Doser et al. 2021" height="160" width="200">
<div class="modal" id="Doser et al. 2021">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/doserjef">Doser J.W.</a>, Finley A.O., Weed A.S., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2021) Integrating automated acoustic vocalization data and point count surveys for estimation of bird abundance. <em>Methods in Ecology and Evolution</em>. <a href=https://besjournals.onlinelibrary.wiley.com/doi/10.1111/2041-210X.13578>DOI: 10.1111/2041-210X.13578</a>
</p>
<p>
<strong>Abstract</strong> - We develop an integrated modelling framework that combines bird point count survey data with acoustic recordings. Simulations revealed that combining acoustic and point count data improves accuracy and precision of abundance estimates compared to models using only one of these data types. Our case study revealed moderate support for a decline of the Eastern Wood-Pewee in VT, USA. Our integrated modelling approach combined dense acoustic data with fewer point count surveys to deliver reliable estimates of species abundance without the need for manual identification of acoustic vocalizations or a large number of repeated point count surveys.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Doser_etal_2021_MEE">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2020F">Farr_etal_2021_Ecol</h3>
<section class="example">
<section class="title">
<h1>Integrating distance sampling and presence‐only data to estimate species abundance</h1>
<img class="modal-img" src="assets/images/farr_idm.png" alt="Farr et al. 2021" height="300" width="200">
<div class="modal" id="Farr et al. 2021">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/farrmt">Farr M.T.</a>, Green D.S., Holekamp K.E., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2021) Integrating distance sampling and presence‐only data to estimate species abundance. <em>Ecology</em>. <a href=https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.3204>DOI: 10.1002/ecy.3204</a>
</p>
<p>
<strong>Abstract</strong> - We developed an integrated point process model to combine presence‐only and distance sampling data for estimation of spatially‐explicit abundance patterns. Simulations across a range of parameter values demonstrate that our model can recover estimates of biological covariates, but parameter accuracy and precision varied with the quantity of each data type. We applied our model to a case study of black‐backed jackals in the Masai Mara (Kenya) to evaluate the effects of environmental covariates and anthropogenic disturbance on abundance across the Reserve.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Farr_etal_2021_Ecol">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2021Z">Zylstra_etal_2021_NEE</h3>
<section class="example">
<section class="title">
<h1>Changes in climate drive recent monarch butterfly dynamics</h1>
<img class="modal-img" src="assets/images/Zylstra_2021_NEE.png" alt="Zylstra et al. 2021" height="200" width="200">
<div class="modal" id="Zylstra et al. 2021">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/ezylstra">Zylstra E.R.</a>, Ries L., Neupane N., <a href="https://github.com/saund123">Saunders S.P.</a>, Ramírez M.I., Rendón-Salinas E., Oberhauser K.S., <a href="https://github.com/farrmt">Farr M.T.</a>, and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2021) Changes in climate drive recent monarch butterfly dynamics. <em>Nature Ecology and Evolution</em>. <a href=https://doi.org/10.1038/s41559-021-01504-1>DOI: 10.1038/s41559-021-01504-1</a>
</p>
<p>
<strong>Abstract</strong> - We use a hierarchical modeling approach, combining data from >18,000 systematic surveys to evaluate support for three hypotheses explaining monarch butterfly declines (loss of milkweed host plants from increased herbicide use, mortality during autumn migration and/or early-winter resettlement, and changes in breeding-season climate). Between 2004–2018, breeding-season weather was nearly seven times more important than other factors in explaining variation in summer population size, which was positively associated with the size of the subsequent overwintering population.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Zylstra_etal_2021_NEE">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2019S2">Saunders_etal_2019_PNAS</h3>
<section class="example">
<section class="title">
<h1>Multiscale seasonal factors drive the size of winter monarch colonies</h1>
<img class="modal-img" src="assets/images/Saunders_PNAS_fig.png" alt="Saunders et al. 2019" width="200">
<div class="modal" id="Saunders et al. 2019">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/saund123">Saunders S.P.</a>, Ries L., Neupane N., Ramirez M.I., Garcia-Serrano E., Rendon-Salinas E., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2019) Multiscale seasonal factors drive the size of winter monarch colonies. <em>Proceedings of the National Academy of Sciences</em>. <a href=https://www.pnas.org/content/116/17/8609>DOI: 10.1073/pnas.1805114116</a>
</p>
<p>
<strong>Abstract</strong> - We used a multiscale modeling approach to address whether conditions during autumn migration contributed to the decline of the eastern monarch butterfly population from 2004-2015. Our results suggest that environmental factors during — and at the culmination of — autumn migration, combined with summer population size, explain a substantial portion of temporal variation in monarch population dynamics during a time frame after which other major putative sources of mortality (host plant and winter habitat loss) have lessened considerably.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Saunders_etal_2019_PNAS">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2019S">Saunders_etal_2019_Ecology</h3>
<section class="example">
<section class="title">
<h1>Disentangling data discrepancies with integrated population models</h1>
<img src="assets/images/amwo_lifecycle.jpg" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/saund123">Saunders S.P.</a>, <a href="https://github.com/farrmt">Farr M.T.</a>, <a href="https://github.com/lxwrght">Wright A.D.</a>, <a href="https://github.com/cbahlai">Bahlai C.A.</a>, <a href="https://github.com/Xuletajr">Ribeiro J.W.</a>, <a href="https://github.com/samrossman">Rossman S.</a>, <a href="https://github.com/asussman52">Sussman A.L.</a>, Arnold T.W., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2019) Disentangling data discrepancies with integrated population models. <em>Ecology</em>. <a href=https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.2714>DOI: 10.1002/ecy.2714</a>
</p>
<p>
<strong>Abstract</strong> - We develop an integrated population model to address dataset discrepancies that stem from spatiotemporal variability. As a case study, we present an analysis of a migratory species, the American woodcock, in which individual monitoring programs suggest differing population trends. To address this discrepancy, we synthesized several long-term datasets within an integrated modeling framework to estimate population trends, and link dynamic drivers across the full annual cycle and geographic extent of the species.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/timberdoodle">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2018S">Saunders_etal_2018_JAE</h3>
<section class="example">
<section class="title">
<h1>Evaluating population viability and efficacy of conservation management using integrated population models</h1>
<img src="assets/images/Saundersploveripm.png" alt="Figure 6" height="210" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/saund123">Saunders S.P.</a>, Cuthbert F.J., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2018) Evaluating population viability and efficacy of
conservation management using integrated population models. <em>Journal of Applied Ecology</em>. <a href=http://onlinelibrary.wiley.com/wol1/doi/10.1111/1365-2664.13080/full>DOI: 10.1111/1365-2664.13080</a>
</p>
<p>
<strong>Abstract</strong> - We developed a coupled integrated population model-Bayesian population viability analysis (IPM-BPVA) to assess the (i) impact of demographic rates (survival, fecundity, immigration) on past population dynamics; (ii) population viability 10 years into the future; and (iii) efficacy of possible management strategies for the federally endangered Great Lakes piping plover population.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/piping-plover-IPM">Link to repo</a>
</p>
</section>
</section>
<h3 id="dataintegration2017Z">Zipkin_etal_2017_Ecology</h3>
<section class="example">
<section class="title">
<h1>Integrating count and detection–nondetection data to model population dynamics</h1>
<img src="assets/images/Zipkin2017Ecology.png" alt="Figure 4" height="140" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/ezipkin">Zipkin E.F.</a>, <a href="https://github.com/samrossman">Rossman S.</a>, Yackulic C.B., Wiens J.D., Thorson J.T., Davis R.J., and Grant E.H.C. (2017) Integrating count and detection–nondetection data to model population dynamics. <em>Ecology</em>. <a href=http://onlinelibrary.wiley.com/doi/10.1002/ecy.1831/abstract> DOI: 10.1002/ecy.1831</a>
</p>
<p>
<strong>Abstract</strong> - We present a modeling framework for integrating detection–nondetection and count data to
estimate population dynamics and abundance. We develop a series of simulations illustrating the relative value of count vs.
detection–nondetection data. We also provide an
empirical example of the model combining long-term detection–nondetection data with newly collected
count data from a population of barred owls in the Pacific Northwest to examine
the factors influencing population abundance over time.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Integrated_Count_Occupancy_model-Zipkin-et-al.-Ecology-2017">Link to repo</a>
</p>
</section>
</section>
<br><br><br>
<!-- Project -->
<h2 id="icm">Integrated community models</h2>
<p> Integrated community models — an emerging framework in which multiple data sources for multiple species are analyzed simultaneously — offer opportunities to expand inferences beyond the single-species and single-data source approaches common in ecology. These models produce key information on the status, trends, and dynamics of species and biodiversity as a whole. </p>
<p><h3><em> <a href="#icm2024G">Gilbert_etal_2024_Ecol</a></em> | <em> <a href="#icm2023Z">Zipkin_etal_2023_JAE</a></em> | <em><a href="#icm2022D">Doser_etal_2022_MEE_B</a></em></h3></p>
<br><br>
<h3 id="icm2024G">Gilbert_etal_2024_Ecol</h3>
<section class="example">
<section class="title">
<h1>Integrated community models: A framework combining multi-species data sources to estimate the status, trends, and dynamics of biodiversity</h1>
<img class="modal-img" src="assets/images/Gilbert_etal_2024_Ecol_2.png" alt="Gilbert et al. 2024" height="164" width="200">
<div class="modal" id="Gilbert et al. 2024">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/n-a-gilbert">Gilbert N.A.</a>, Blommel C.M., <a href="https://github.com/farrmt">Farr M.T.</a>, Green D.S., Holekamp K.E., <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2024) A multispecies hierarchical model to integrate count and distance sampling data. <em>Ecology</em>. <a href="https://doi.org/10.1002/ecy.4326">DOI: 10.1002/ecy.4326</a>
</p>
<p>
<strong>Abstract</strong> - Integrated community models combine the benefits of integrated and community modeling approaches. Here, we developed a multi-species model that combines distance sampling and single-visit count data, in which information is shared among data sources (via a joint likelihood) and species (via a random effects structure) to estimate abundance patterns across a community. Simulations demonstrate that the model produced unbiased estimates of abundance and detection parameters even when detection probabilities varied between the data types. We applied the model to a herbivore community in the Masai Mara National Reserve (Kenya) and found considerable interspecific variation in response to local wildlife management practices.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Gilbert_etal_2024_TBD">Link to repo</a>
</p>
</section>
</section>
<h3 id="icm2023Z">Zipkin_etal_2023_JAE</h3>
<section class="example">
<section class="title">
<h1>Integrated community models: A framework combining multi-species data sources to estimate the status, trends, and dynamics of biodiversity</h1>
<img class="modal-img" src="assets/images/Zipkin_etal_2023_JAE_Fig2.png" alt="Zipkin et al. 2023" width="200">
<div class="modal" id="Doser et al. 2021">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/ezipkin">Zipkin E.F.</a> , <a href="https://github.com/doserjef">Doser J.W.</a>, <a href="https://github.com/CourtneyLDavis">Davis C.L.</a>, <a href="https://github.com/wleuenberger">Leuenberger W.</a>, <a href="https://github.com/Samwiry">Ayebare S.</a>, <a href="https://github.com/davisk93">Davis K.L.</a> (2023) Integrated community models: A framework combining multi-species data sources to estimate the status, trends, and dynamics of biodiversity. <em>Journal of Animal Ecology</em>. <a href=https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.14012>DOI: 10.1111/1365-2656.14012</a>
</p>
<p>
<strong>Abstract</strong> - Evaluating the dynamics of whole communities is critical to understanding the responses of biodiversity to ongoing environmental pressures. However, biodiversity data vary substantially in quantity and information content, requiring careful reconciliation. We highlight the emerging "integrated community modelling" (ICM) framework that combines both data integration and hierarchical community modelling to derive inferences on species- and community-level dynamics. We illustrate the framework with three worked examples to demonstrate how ICMs can be used to: extend the geographic scope when evaluating species distributions and richness; discern population and community trends over time; and estimate demographic rates and population growth for communities of sympatric species.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Zipkin_etal_2023_JAE">Link to repo</a>
</p>
</section>
</section>
<h3 id="icm2022D">Doser_etal_2022_MEE_B</h3>
<section class="example">
<section class="title">
<h1>Integrated community occupancy models: A framework to assess occurrence and biodiversity dynamics using multiple data sources</h1>
<img class="modal-img" src="assets/images/Doser_2022_MEE.png" alt="Doser et al. 2022" height="185" width="200">
<div class="modal" id="Doser et al. 2021">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/doserjef">Doser J.W.</a>, <a href="https://github.com/wleuenberger">Leuenberger W.</a>, Sillet T.S., Hallworth M.T., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2022) Integrated community occupancy models: A framework to assess occurrence and biodiversity dynamics using multiple data sources. <em>Methods in Ecology and Evolution</em>. <a href=https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13811>DOI: 10.1111/2041-210X.13811</a>
</p>
<p>
<strong>Abstract</strong> - We present an "integrated community occupancy model" (ICOM) that unites principles of data integration and hierarchical community modeling to provide inferences on species-specific and community occurrence dynamics using multiple data sources. Using simulations and a case study, we show that ICOMs provide more precise estimates of occurrence dynamics compared to multi-species models using single data sources or integrated single-species models, offering an attractive approach to estimate species and biodiversity metrics.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Doser_etal_2022_MEE">Link to repo</a>
</p>
</section>
</section>
<br><br><br>
<!-- Project -->
<h2 id="unmarked">Unmarked population models</h2>
<p>We develop models to estimate the abundance, distribution, and demographic rates of populations using unmarked data, or data types that do not track individuals. These efforts allow us to quantitatively evaluate important life history parameters with less sampling effort than is traditionally required with mark-recapture studies.</p>
<p><h3> <em><a href="#unmarked2024D">Doser_etal_2024_JABES</a></em> | <em><a href="#unmarked2024D">Doser_etal_2024_GEB</a></em> | <em><a href="#unmarked2022F">Farr_etal_2022_ConsBio</a></em> | <em><a href="#unmarkedrevD">DiRenzo_etal_2019_EcolAndEvol</a></em> | <em><a href="#unmarked2018D">DiRenzo_etal_2018_EcoApps</a></em> | <em><a href="#unmarked2018S">Saunders_etal_2018_Ecog</a></em> | <em><a href="#unmarked2016R">Rossman_etal_2016_Ecol</a></em> | <em><a href="#unmarked2016S">Saunders_etal_2016_GEB</a></em> | <em><a href="#unmarked2014Z">Zipkin_etal_2014_Ecol</a></em> | <em><a href="#unmarked2014Z2">Zipkin_etal_2014_EcolAndEvol</a></em></p>
<br><br>
<h3 id="unmarked2024D">Doser_etal_2024_JABES</h3>
<section class="example">
<section class="title">
<h1>Guidelines for the use of spatially-varying coefficients in species distribution models</h1>
<img class="modal-img" src="assets/images/Doser-et-al-2024-JABES.png" alt="Doser et al. 2024" height="146" width="200">
<div class="modal" id="Doser et al. 2024">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/doserjef">Doser J.W.</a>, Finley A.O., Saunders S.P., Kéry M., Weed A.S., and <a href="https://github.com/ezipkin"> Zipkin E.F.</a> (2024) Modeling complex species-environment relationships through spatially-varying coefficient occupancy models. <em>Journal of Agricultural, Biological and Environmental Statistics</em>. <a href=https://link.springer.com/article/10.1007/s13253-023-00595-6>DOI: 10.1007/s13253-023-00595-6 </a>
<p>
<strong>Abstract</strong> - Occupancy models can quantify spatial variation in species distributions while accounting for observational biases. However, the common assumption that a single set of regression coefficients can adequately explain species-environment relationships is often unrealistic across large spatial domains. We develop computationally-efficient single-species and multi-species spatially-varying coefficient occupancy models. Our models are particularly relevant for quantifying species-environment relationships using data from large-scale monitoring programs, which are increasingly prevalent for answering macroscale ecological questions regarding wildlife responses to global change.</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Doser_etal_2024_JABES">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarked2024D">Doser_etal_2024_GEB</h3>
<section class="example">
<section class="title">
<h1>Guidelines for the use of spatially-varying coefficients in species distribution models</h1>
<img class="modal-img" src="assets/images/Doser-et-al-2024-GEB.png" alt="Doser et al. 2024" height="169" width="200">
<div class="modal" id="Doser et al. 2024">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/doserjef">Doser J.W.</a>, Kéry M., Saunders S.P., Finley A.O., Bateman B.L., Grand J., Reault S., Weed A.S., and <a href="https://github.com/ezipkin"> Zipkin E.F.</a> (2024) Guidelines for the use of spatially-varying coefficients in species distribution models. <em>Global Ecology and Biogeography</em>. <a href=https://onlinelibrary.wiley.com/doi/full/10.1111/geb.13814>DOI: 10.1111/geb.13814 </a>
</p>
<p>
<strong>Abstract</strong> - Species distribution models (SDMs) are increasingly applied across macroscales using detection-nondetection data. Spatially-varying coefficient (SVC) models can readily account for variability in the effects of environmental covariates. Here we demonstrate the inferential benefits of SVC SDMs, with a particular focus on how this approach can be used to generate and test ecological hypotheses regarding the drivers of spatial variability in population trends and species-environment relationships. These applications display the utility of SVC SDMs to assess the environmental factors that drive species distributions across both local and broad scales.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Doser_etal_2024_GEB">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarked2022F">Farr_etal_2022_ConsBio</h3>
<section class="example">
<section class="title">
<h1>Quantifying the conservation status and abundance trends of wildlife communities with detection-nondetection data</h1>
<img class="modal-img" src="assets/images/Farr2022_ConsBio.png" alt="Farr et al. 2022" height="200" width="200">
<div class="modal" id="Farr et al. 2022">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/farrmt">Farr M.T.</a>, O'Brien T., Yackulic C.B., and <a href="https://github.com/ezipkin"> Zipkin E.F.</a> (2022) Quantifying the conservation status and abundance trends of wildlife communities with detection-nondetection data. <em>Conservation Biology</em>. <a href=https://conbio-onlinelibrary-wiley-com.proxy2.cl.msu.edu/doi/10.1111/cobi.13934>DOI: 10.1111/cobi.13934 </a>
</p>
<p>
<strong>Abstract</strong> - We developed a "multispecies dynamic N-occupancy model" using detection-nondetection data to estimate abundance and demographic rate parameters at species- and community-levels. To validate our model, we conducted a simulation study and found that our multispecies model outperformed comparable single-species models in many cases. We apply our model to a case study using camera trap data across tropical equatorial Africa to evaluate the statuses and trends of a forest-dwelling antelope community.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Farr_etal_2022_ConsBiol">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarkedrevD">DiRenzo_etal_2019_EcolAndEvol</h3>
<section class="example">
<section class="title">
<h1>Disease structured N-Mixture models: a practical guide to model disease dynamics using count data</h1>
<img src="assets/images/DisNmix.PNG" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/Grace89">DiRenzo G.V.</a>, Che-Castaldo C., <a href="https://github.com/saund123">Saunders S.P.</a>, Grant E.H.C., and <a href="https://github.com/ezipkin"> Zipkin E.F.</a> (2019) Disease sturcutred N-Mixture models: a practical guide to model disease dynamics using count data. <em>Ecology and Evolution</em>. <a href=https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4849>DOI: 10.1002/ece3.48</a>
</p>
<p>
<strong>Abstract</strong> - We review the challenges of modeling disease dynamics and describe how (disease-structured) N-mixture models can be used to estimate common metrics, including pathogen prevalence, transmission, and recovery rates while accounting for imperfect host and pathogen detection. We also offer a perspective on future research directions at the intersection of quantitative and disease ecology, including the estimation of false positives in pathogen presence, spatially-explicit disease-structured N-mixture models, and the integration of other data types with count data to inform disease dynamics.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/DiRenzo_etal_2019_EcolAndEvol">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarked2018D">DiRenzo_etal_2018_EcoApps</h3>
<section class="example">
<section class="title">
<h1>Eco-evolutionary rescue promotes host-pathogen coexistence</h1>
<img src="assets/images/direnzo2017.png" alt="Figure 1" height="160" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/Grace89">DiRenzo G.V.</a>, <a href="https://github.com/ezipkin"> Zipkin E.F.</a>, Grant E.H.C., Royle J.A., Longo A.V., Zamudio K.R., and Lips K.R. (2018) Eco-evolutionary rescue promotes host-pathogen coexistence. <em>Ecological Applications</em>. <a href=https://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.1792>DOI: 10.1002/eap.1792</a>
</p>
<p>
<strong>Abstract</strong> - Using a novel disease-structured N-mixture model, we evaluate empirical support for three host-pathogen coexistence hypotheses (source-sink, eco-evolutionary rescue, and spatial variation in pathogen transmission) in a Neotropical amphibian community decimated by Batrachochytrium dendrobatidis (i.e. chydrid fungus) six years earlier. We found that the primary driver of host-pathogen coexistence was eco-evolutionary rescue, as evidenced by the similar amphibian survival and recruitment rates between infected and uninfected hosts.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/DiseaseStructuredNMixtureModel">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarked2018S">Saunders_etal_2018_Ecography</h3>
<section class="example">
<section class="title">
<h1>Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies <em>Danaus plexippus</em></h1>
<img src="assets/images/saunders2017.png" alt="Figure 1" height="130" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/saund123">Saunders S.P.,</a> Ries L., Oberhauser K.S., Thogmartin W.E., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2018) Local and cross‐seasonal associations of climate and land use with abundance of monarch butterflies. <em>Ecography</em>. <a href=http://onlinelibrary.wiley.com/doi/10.1111/ecog.02719/abstract> DOI: 10.1111/ecog.02719</a>
</p>
<p>
<strong>Abstract</strong> - We modeled site-specific summer abundance of monarch butterflies
at sites across Illinois to assess relative associations of monarch abundance with
climate and land use variables during the winter, spring, and summer stages of their annual cycle. We estimate
abundance as a function of local climate, site-specific crop cover, and county-level herbicide application as well as cross-seasonal covariates, including annual abundance of wintering monarchs in Mexico and climate conditions during spring migration and breeding in Texas.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Saunders_etal_2017_Ecography">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarked2016R">Rossman_etal_2016_Ecology</h3>
<section class="example">
<section class="title">
<h1>Dynamic N-occupancy models: estimating demographic rates and local abundance from detection-nondetection data</h1>
<img src="assets/images/RossmanEcology2016.png" alt="Figure 2" height="300" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/samrossman">Rossman S.</a>, Yackulic C.B., <a href="https://github.com/saund123">Saunders S.P.</a>, Reid J., Davis R., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2016) Dynamic N-occupancy models: estimating demographic rates and local abundance from detection-nondetection data. <em>Ecology</em>. <a href=http://onlinelibrary.wiley.com/wol1/doi/10.1002/ecy.1598/abstract>DOI: 10.1002/ecy.1598</a>
</p>
<p>
<strong>Abstract</strong> - We introduce a new model (“Dynamic N-occupancy model”) capable of providing accurate estimates of local abundance,
population gains, and survival probabilities while accounting for imperfect detection using only
detection-nondetection data. We examine the data
requirements, including the number of years and survey sites needed, for unbiased and precise estimation of parameters. We apply
our model to estimate spatio-temporal heterogeneity in abundances of barred owls within a recently invaded region in Oregon.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Dynamic_N-Occupancy">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarked2016S">Saunders_etal_2016_GEB</h3>
<section class="example">
<section class="title">
<h1>Evaluating confidence in climate-based predictions of population change in a migratory species</h1>
<img src="assets/images/saunders2016.png" alt="Figure 4" height="116" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/saund123">Saunders S.P.</a>, Ries L., Oberhauser K.S., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2016) Evaluating confidence in climate-based predictions of population change in a migratory species. <em>Global Ecology and Biogeography</em>. <a href=http://onlinelibrary.wiley.com/doi/10.1111/geb.12461/full> DOI: 10.1111/geb.12461</a>
</p>
<p>
<strong>Abstract</strong> - Using negative binomial regression models and relevant local and regional scale covariates,
we evaluate spatiotemporal synchrony between monarch butterflies in the two states (OH and IL). We also develop
a novel quantitative assessment approach to determine the temporal predictive strength of our model with
Bayesian P-values.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/monarch_confidence">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarked2014Z">Zipkin_etal_2014_Ecology</h3>
<section class="example">
<section class="title">
<h1>Modeling structured population dynamics using data from unmarked individuals</h1>
<img src="assets/images/Zipkin2014Ecology.png" alt="Figure 2" height="150" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/ezipkin">Zipkin E.F.</a>, Thorson J.T., See K., Lynch H.J., Grant E.H.C., Kanno Y., Chandler R.B., Letcher B.H., and Royle J.A. (2014) Modeling structured population dynamics using data from unmarked individuals. <em>Ecology</em>. <a href=http://onlinelibrary.wiley.com/doi/10.1890/13-1131.1/abstract>DOI: 10.1890/13-1131.1</a>
</p>
<p>
<strong>Abstract</strong> - We extend N-mixture models to demonstrate how demographic parameters and abundance can be estimated for
structured populations using only stage-structured count data. We present a range of simulations to illustrate the data
requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply
our modeling framework to a population of northern dusky salamanders in the mid-Atlantic region and find that the population
is unexpectedly declining.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Structured_Nmixture_models-Zipkin_et_al_Ecology_2014">Link to repo</a>
</p>
</section>
</section>
<h3 id="unmarked2014Z2">Zipkin_etal_2014_EcolAndEvol</h3>
<section class="example">
<section class="title">
<h1>Inferences about population dynamics from count data using multistate models: a comparison to capture–recapture approaches</h1>
<img src="assets/images/zipkin_e_and_e2014.png" alt="Figure 1" height="150" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/ezipkin">Zipkin E.F.</a>, Sillett T.S., Grant E.H.C., Chandler R.B., and Royle J.A. (2014) Inferences about population dynamics from count data using multistate models: a comparison to capture–recapture approaches. <em>Ecology and Evolution</em>. <a href=http://onlinelibrary.wiley.com/doi/10.1002/ece3.942/full>DOI: 10.1002/ece3.942</a>
</p>
<p>
<strong>Abstract</strong> - We extend recently developed multistate, open population N-mixture model to account for the case where not
all individuals can be assigned to a state during sampling. Using only state-specific count data, we show how our model can be
used to estimate local population abundance, as well as density-dependent recruitment rates and state-specific survival in a
black-throated blue warbler population and compare our results to those estimated with capture–recapture data.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Structured_Nmixture_models-Zipkin_et_al_Ecology-Evolution_2014">Link to repo</a>
</p>
</section>
</section>
<br><br><br>
<!-- Project -->
<h2 id="community">Community analyses</h2>
<p>Assessing the impacts of climate and habitat on communities of species is increasingly important as abiotic conditions continue to change. Yet, most data collection techniques do not produce enough data for analyses on a majority of species observed during sampling. We develop multi-species models to estimate the effects of environmental covariates on all species within a community, including those that are rare or elusive.</p>
<p><h3><em><a href="#community2023A">Ayebare_etal_2023_ProcB</a></em> | <em><a href="#community2022C">Cabodevilla_etal_2022_AgEcosEnv</a></em> | <em><a href="#community2022W">Wright_etal_2022_EcoApps</a></em> | <em><a href="#community2021D">Doser_etal_2021_EcoApps</a></em> | <em><a href="#community2020W">Wright_etal_2020_LandEcol</a></em> | <em><a href="#community2020Z">Zipkin_etal_2020_Science</a></em> | <em><a href="#community2019F">Farr_etal_2019_EcoApps</a></em> | <em><a href="#community2018B">Brodie_etal_2018_Biotr</a></em> | <em><a href="#community2018R">Ribeiro_etal_2018_EcoApps</a></em> | <em><a href="#communitybasic">Example model code</a></em></h3></p>
<br><br>
<h3 id="community2023A">Ayebare_etal_2023_ProcB</h3>
<section class="example">
<section class="title">
<h1>An environmental habitat gradient and within-habitat segregation enable co-existence of ecologically similar bird species</h1>
<img src="assets/images/Ayebare_etal_2023_ProcB.jpg" height="133" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/samwiry">Ayebare S.</a>, <a href="https://github.com/doserjef">Doser J.W.</a>, Plumptre A.J., Owiunji I., Mugabe H., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2023) An environmental habitat gradient and within-habitat segregation enable co-existence of ecologically similar bird species <em>Proceedings of the Royal Society B</em>. <a href=https://doi.org/10.1098/rspb.2023.0467>DOI: 10.1098/rspb.2023.0467</a>
</p>
<p>
<strong>Abstract</strong> - We evaluated coexistence mechanisms of ecologically similar bird species in a biodiversity-rich transboundary montane forest in east-central Africa by computing niche overlap indices. Coexistence of ecologically similar species within a highly diverse montane forest was determined primarily by abiotic factors (e.g. environmental elevation gradient) and secondarily by biotic factors (e.g. vertical and horizontal segregation within habitats). Partitioning across multiple levels of spatial organization is a key driver of coexistence in diverse communities.
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Ayebare_etal_2023_ProcB">Link to repo</a>
</p>
</section>
</section>
<h3 id="community2022C">Cabodevilla_etal_2022_AgEcosEnv</h3>
<section class="example">
<section class="title">
<h1>The implementation of irrigation leads to declines in farmland birds</h1>
<img src="assets/images/Cabodevilla_2022_AgEE.jpg" height="154" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - Cabodevilla X., <a href="https://github.com/lxwrght">Wright A.D.</a>, Villanua D., Arroyo B., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2022) The implementation of irrigation leads to declines in farmland birds. <em>Agriculture, Ecosystems and Environment</em>. <a href=https://doi.org/10.1016/j.agee.2021.107701>DOI: 10.1016/j.agee.2021.1077011</a>
</p>
<p>
<strong>Abstract</strong> - We evaluated the impact of irrigation on bird species occurrence patterns using a Before-After Control-Impact design. We analyzed a 13-year dataset within an agricultural area in northern Spain using a hierarchical multi-species occurrence model. Our findings suggest that irrigation can lead to substantial changes in local bird communities, with less diversity and fewer farmland species.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Cabodevilla_etal_2022_AgEE">Link to repo</a>
</p>
</section>
</section>
<h3 id="community2022W">Wright_etal_2022_EcoApps</h3>
<section class="example">
<section class="title">
<h1>A comparison of monitoring designs to assess wildlife community parameters across spatial scales</h1>
<img src="assets/images/Wright_EcoApps_Fig1.jpeg" height="230" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/lxwrght">Wright A.D.</a>, Grant, E.H.C., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2022) A comparison of monitoring designs to assess wildlife community parameters across spatial scales. <em>Ecological Applications</em>. <a href=https://doi.org/10.1002/eap.2621>DOI: 10.1002/eap.2621</a>
</p>
<p>
<strong>Abstract</strong> - Using an amphibian monitoring program that spans a network of U.S. National Parks as a motivating example, we evaluated and compared the ability of five monitoring designs - stratified random, weighted effort, indicator unit, rotating panel, and split panel - to recover parameter values that describe the status (occupancy), trends (change in occupancy), and drivers (spatially-varying covariate and an autologistic term) of wildlife communities at two spatial scales.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Wright_etal_2022_EcoApps">Link to repo</a>
</p>
</section>
</section>
<h3 id="community2021D">Doser_etal_2021_EcoApps</h3>
<section class="example">
<section class="title">
<h1>Trends in bird abundance differ among protected forests but not bird guilds</h1>
<img src="assets/images/Doser_2021_EcoApps.png" height="200" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/doserjef">Doser J.W.</a>, Weed A.S, <a href="https://github.com/ezipkin">Zipkin E.F.</a>, Miller K.M., and Finley A.O. (2021) Trends in bird abundance differ among protected forests but not bird guilds. <em>Ecological Applications</em>. <a href= https://doi.org/10.1002/eap.2377>DOI: 10.1002/eap.2377</a>
</p>
<p>
<strong>Abstract</strong> - We developed a multi-species, multi-region removal sampling model that shares information across species and parks to enable inference on rare species and sparsely sampled parks. Using the model, we assessed abundance trends for 106 bird species in a network of eight national park forests located within the northeast USA from 2006-2019 to evaluate the effects of local forest structure. Trends in bird abundance over time varied widely across parks, but species showed similar trends within parks.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Doser_etal_2021_EcoApps">Link to repo</a>
</p>
</section>
</section>
<h3 id="community2020W">Wright_etal_2020_LandEcol</h3>
<section class="example">
<section class="title">
<h1>A hierarchical analysis of habitat area, connectivity, and quality on amphibian diversity across spatial scales</h1>
<img src="assets/images/WrightLandEcol.jpg" height="154" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/lxwrght">Wright A.D.</a>, Grant E.H.C., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2020) A hierarchical analysis of habitat area, connectivity, and quality on amphibian diversity across spatial scales. <em>Landscape Ecology</em>. <a href=https://link.springer.com/article/10.1007%2Fs10980-019-00963-z>DOI: 10.1007/s10980-019-00963-z</a>
</p>
<p>
<strong>Abstract</strong> - We developed a multi-region community occupancy model to analyze 13 years of amphibian monitoring data within the National Capital Region, a network of U.S. National Parks. To examine the influence of fragmentation on biodiversity across scales, we (1) estimated the effects of habitat area, connectivity, and quality at both local (i.e. community) and regional (i.e. metacommunity) scales; and (2) evaluated the direction, magnitude, and precision of these estimates at both spatial scales. Our hierarchical framework can help managers and policymakers elucidate the relevant spatial scale(s) to target conservation efforts.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Wright_etal_2020_LandEcol">Link to repo</a>
</p>
</section>
</section>
<h3 id="community2020Z">Zipkin_etal_2020_Science</h3>
<section class="example">
<section class="title">
<h1>Tropical snake diversity collapses after widespread amphibian loss</h1>
<img src="assets/images/ZipkinScience.jpg" height="170" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/ezipkin">Zipkin E.F.</a>, <a href="https://github.com/Grace89">DiRenzo G.V.</a>, Ray J.M., <a href="https://github.com/samrossman">Rossman S.</a>, and Lips K.R. (2020) Tropical snake diversity collapses after widespread amphibian loss. <em>Science</em>. <a href=https://science.sciencemag.org/content/367/6479/814>DOI: 10.1126/science.aay5733</a>
</p>
<p>
<strong>Abstract</strong> - We document the collapse of a snake community after an epizootic lead to the catastrophic loss of amphibians, a food source for snakes. Following mass mortality of amphibians, the snake community contained fewer species and was more homogeneous across the study site with several species in poorer body condition, despite no other systematic changes in the environment. The demise of the snake community demonstrates the repercussive consequences of the biodiversity crisis and calls attention to the invisible declines of rare and data deficient species.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Zipkin_etal_2020_Science">Link to repo</a>
</p>
</section>
</section>
<h3 id="community2019F">Farr_etal_2019_EcoApps</h3>
<section class="example">
<section class="title">
<h1>Multi-species modeling reveals variable responses of African carnivores to management alternatives and anthropogenic disturbance</h1>
<img class="modal-img" src="assets/images/farr_hmsds.png" alt="Farr et al. 2019" href="#myModal1" height="116" width="200">
<div class="modal" id="Farr et al. 2019">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/farrmt">Farr M.T.</a>, Green D.S., Holekamp K.E., Roloff G.J., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2019) Multi-species modeling reveals variable responses of African carnivores to management alternatives and anthropogenic disturbance. <em>Ecological Applications</em>. <a href=https://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.1845>DOI: 10.1002/eap.1845</a>
</p>
<p>
<strong>Abstract</strong> - Using a hierarchical multi-species modeling approach, we examined the effects of alternative management strategies (active vs. passive enforcement of regulations) on carnivore abundances and group sizes at both species and community levels in the Masai Mara National Reserve, Kenya. We estimated the effects of management regime on abundance and group size for 11 observed carnivore species at both species and community levels.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Farr_etal_2019_EcoApps">Link to repo</a>
</p>
</section>
</section>
<h3 id="community2018B">Brodie_etal_2018_Biotropica</h3>
<section class="example">
<section class="title">
<h1>Models for assessing local‐scale co‐abundance of animal species while accounting for differential detectability and varied responses to the environment</h1>
<img src="assets/images/Brodie_etal_2018_Biotropica1.png" alt="Figure 1" height="250" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - Brodie J.F., Helmy O.E., Mohd-Azlan J., Granados A., Bernard H., Giordano A.J., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2018) Models for assessing local‐scale co‐abundance of animal species while accounting for differential detectability and varied responses to the environment. <em>Biotropica</em>. <a href=https://onlinelibrary.wiley.com/doi/abs/10.1111/btp.12500>DOI: 10.1111/btp.12500</a>
</p>
<p>
<strong>Abstract</strong> - We developed a modeling framework to assess how the local abundance of one species influences the local abundance of a potential competitor while explicitly accounting for differential responses to environmental conditions. Our models also incorporate imperfect detection as well as abundance estimation error for both species. We applied the model to four pairs of mammal species in Borneo (civet, macaque, muntjac deer, and porcupine), surveyed by extensive and spatially widespread camera trapping.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Two_species_models-Brodie_et_al_2018">Link to repo</a>
</p>
</section>
</section>
<h3 id="community2018R">Ribeiro_etal_2018_EcoApps</h3>
<section class="example">
<section class="title">
<h1>Effects of agriculture and topography on tropical amphibian species and communities</h1>
<img src="assets/images/Ribeiro_etal_2018_EcoApps2.png" alt="Figure 1" height="200" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/Xuletajr">Ribeiro Jr. J.W.</a>, Siqueira T., Brejão G.L., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2018) Effects of agriculture and topography on tropical amphibian species and communities. <em>Ecological Applications</em>. <a href=https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.1741>DOI: 10.1002/eap.1741</a>
</p>
<p>
<strong>Abstract</strong> - We quantify the response of amphibian species to landscape-scale characteristics in streams within the Brazilian Atlantic Forest. We developed a hierarchical community occupancy model to quantify the influence of landscape-scale characteristics (forest cover, agriculture, catchment area, stream density and slope) on amphibian occurrence while accounting for imperfect detection using two survey methods (an active and a passive approach). Our findings suggest that small streams and flat topography lead to higher amphibian occurrence probabilities for many species.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Community-occupancy-model-amphibians-atlantic-forest-streams">Link to repo</a>
</p>
</section>
</section>
<h3 id="communitybasic">Example model code</h3>
<section class="example">
<section class="title">
<h1>Hierarchical community model example model and code</h1>
<p>Based on work from Zipkin et al. 2010</p>
<img src="assets/images/Zipkin2010.png" alt="lampyrid timeseries" height="120" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/ezipkin">Zipkin E.F.</a>, Royle J.A., Dawson D.K., and Bates S. (2010) Multi-species occurrence models to evaluate the effects of conservation and management actions. <em>Biological Conservation</em>. <a href=https://doi.org/10.1016/j.biocon.2009.11.016>DOI: 10.1016/j.biocon.2009.11.016</a>
</p>
<p>
<strong>Abstract</strong> - The hierarchical community model is a multi-species approach to obtain community information, such as species or assemblage richness, by estimating individual species occurrence and detection probabilities. We provide example code and data based off of Zipkin et al. 2010 (Biological Conservation) to demonstrate how to implement multi-species hierarchical models with and without covariates.
</p>
<p>
<strong>Code</strong> - <a href="https://github.com/zipkinlab/Community_model_examples-basic_model">Basic model code</a><br>
<a href="https://github.com/zipkinlab/Community_model_examples-covariate_model">Covariate model code</a>
</p>
</section>
</section>
<!-- This is a commented out example to follow for new project -->
<!-- <section class="example">
<section class="title">
<h1>Sample</h1>
<p>This project is currently in development.</p>
<img src="assets/images/lampyrid_timeseries.png" alt="lampyrid timeseries" height="120" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - Sample
</p>
<p>
<strong>Abstract</strong> - Sample
</p>
<p>
<strong>Code</strong> - <a href="">Link to code</a>
</p>
</section>
</section> -->
<br><br><br>
<!-- Project -->
<h2 id="other">Other projects</h2>
<p>This section includes analyses and models that fall outside the subject range of the other headers.</p>
<p><h3> <em><a href="#other2024D">Doser_etal_2024_MEE</a></em> | <em><a href="#other2024G">Gilbert_etal_2024_Ecol</a></em> | <em><a href="#other2024W">Williams_etal_2024_NatComm</a></em> | <em><a href="#other2022Da">Davis_etal_2022_EcolAndEvol</a></em> | <em><a href="#other2022Do">Doser_etal_2022_MEE_A</a></em> | <em><a href="#other2020B">Bahlai_Zipkin_2020_PLOSComputBiol</a></em> | <em><a href="#other2019G">Green_etal_2019_PTRS</a></em> | <em><a href="#other2019S">Sussman_etal_2019_MEE</a></em> | <em><a href="#other2016R">Rossman_etal_2016_EcolAndEvol</a></em>
</p>
<!--| <em><a href="#otherindev">In development</a></em></h3></p> -->
<br><br>
<h3 id="other2024D">Doser_etal_2024_MEE</h3>
<section class="example">
<section class="title">
<h1>spAbundance: An R package for single-species and multi-species spatially explicit abundance models</h1>
<img src="assets/images/Doser_etal_2024_MEE.jpeg" height="136" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/doserjef">Doser J.W.</a>, Finley A.O., Kéry M., and <a href="https://github.com/ezipkin"> Zipkin E.F.</a> (2024) spAbundance: An R package for single-species and multi-species spatially explicit abundance models. <em>Methods in Ecology and Evolution</em>. <a href="https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.14332">DOI: 10.1111/2041-210X.14332</a>
</p>
<p>
<strong>Abstract</strong> - The spAbundance R package provides a user-friendly platform to fit spatially explicit single-species and multi-species hierarchical distance sampling models, N-mixture models, and generalized linear mixed models using a Bayesian approach. We highlight spAbundance functionality with three vignettes and three case studies. The package can serve as a tool for ecologists and conservation practitioners to generate inferences and predictions on the spatial drivers of abundance in populations and communities.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Doser_et_al_2024_MEE">Link to repo</a>
</p>
</section>
</section>
<h3 id="other2024G">Gilbert_etal_2024_Ecol</h3>
<section class="example">
<section class="title">
<h1>A century of statistical <i>Ecology</i></h1>
<img src="assets/images/Gilbert_etal_2024_Ecol.png" height="112.5" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/n-a-gilbert">Gilbert N.A.</a>, <a href="https://github.com/br-amaral">Amaral B.R.</a>, Smith O.M., <a href="https://github.com/pwilliams0">Williams P.J.</a>, Ceyzyk S., <a href="https://github.com/samwiry">Ayebare S.</a>, <a href="https://github.com/davisk93">Davis K.L.</a>, <a href="https://github.com/wleuenberger">Leuenberger W.</a>, <a href="https://github.com/doserjef">Doser J.W.</a>, <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2024) A century of statistical Ecology. <em>Ecology</em>. <a href="https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.4283">DOI: 10.1002/ecy.4283</a>
</p>
<p>
<strong>Abstract</strong> - Over the last century, the journal <em>Ecology</em> has published many innovative statistical ecology papers that introduced novel modeling methods and provided accessible guides to statistical best practices. In this paper, we reflect on <em>Ecology</em>'s history and its role in the emergence of the subdiscipline of statistical ecology, which we define as the study of ecological systems using mathematical equations, probability, and empirical data. We showcase 36 influential statistical ecology papers and, in so doing, comment on the evolution of the field and what the future might hold.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Gilbert_etal_2024_Ecol">Link to repo</a>
</p>
</section>
</section>
<h3 id="other2024W">Williams_etal_2024_NatComm</h3>
<section class="example">
<section class="title">
<h1>Deep biogeographic barriers explain divergent global vertebrate communities</h1>
<img src="assets/images/Williams_etal_2024_NC.png" height="158" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/pwilliams0">Williams P.J.</a>, <a href="https://github.com/ezipkin">Zipkin E.F.</a>, and Brodie J.F. (2024) Deep biogeographic barriers explain divergent global vertebrate communities. <em>Nature Communications</em>. <a href="https://www.nature.com/articles/s41467-024-46757-z">DOI: 10.1038/s41467-024-46757-z</a>
</p>
<p>
<strong>Abstract</strong> - Biogeographic history can lead to variation in biodiversity across regions, but it remains unclear how isolation among communities may lead to differences in biodiversity. Here, we use a novel continuous measure of biogeographic distance, phylobetadiversity, to analyze the influence of biogeographic isolation on the taxonomic and functional diversity of global mammal and bird assemblages. Our results elucidate how long-lasting biogeographic barriers can lead to divergent diversity patterns, against the backdrop of environmental determinism that predominantly structures diversity across most of the world.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Williams_etal_2024_NatComm">Link to repo</a>
</p>
</section>
</section>
<h3 id="other2022Da">Davis_etal_2022_EcolAndEvol</h3>
<section class="example">
<section class="title">
<h1>Errors in aerial survey count data: Identifying pitfalls and solutions</h1>
<img src="assets/images/Davis-etal-2022-EcolEvol.png" height="300" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/davisk93">Davis K.L.</a>, Silverman E.D., <a href="https://github.com/asussman52">Sussman A.L.</a>, Wilson R.R., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2022) Errors in aerial survey count data: Identifying pitfalls and solutions. <em>Ecology and Evolution</em>. <a href="https://onlinelibrary.wiley.com/doi/10.1002/ece3.8733">DOI: 10.1002/ece3.8733</a>
</p>
<p>
<strong>Abstract</strong> - Aerial surveys are an efficient survey platform for surveying wildlife population across large spatial extents; however, problems common to aerial survey data collection can act to bias inferences. Through an extensive review of the aerial survey literature and a case study focused on waterbird data, we evaluated how common problems encountered in the data (including non-detection, counting error, and species misidentification) can manifest, the potential difficulties conferred, and the history of how these challenges have been addressed. Our results illustrate how each issue can act to bias inferences, highlighting the importance of considering individual methods for mitigating potential problems separately during survey design and analysis.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Davis_etal_2022_EcolAndEvol">Link to repo</a>
</p>
</section>
</section>
<h3 id="other2022Do">Doser_etal_2022_MEE_A</h3>
<section class="example">
<section class="title">
<h1>spOccupancy: An R package for single-species, multi-species, and integrated spatial occupancy models</h1>
<img class="modal-img" src="assets/images/Doser_2022_MEE_A.png" alt="Doser et al. 2022 A" height="100" width="200">
<div class="modal" id="Doser et al. 2022 A">
<span class="close">×</span>
<img class="modal-content">
<div class="modal-caption"></div>
</div>
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/doserjef">Doser J.W.</a>, Finley A.O., Kéry M., and <a href="https://github.com/ezipkin"> Zipkin E.F.</a> (2022) spOccupancy: An R package for single-species, multi-species, and integrated spatial occupancy models. <em>Methods in Ecology and Evolution</em>. <a href=https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13897>DOI: 10.1111/2041-210X.13897 </a>
</p>
<p>
<strong>Abstract</strong> - The spOccupancy package provides a user-friendly platform to fit a variety of single and multi-species occupancy models, making it straightforward to address detection biases and spatial autocorrelation in species distribution models using detection-nondetection data sets. spOccupancy contains functions for data simulation, model fitting, model validation (by posterior predictive checks), model comparison (using information criteria and k-fold cross-validation), and out-of-sample prediction.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Doser_etal_2022_MEE_A">Link to repo</a>
</p>
</section>
</section>
<h3 id="other2020B">Bahlai_Zipkin_2020_PLOSComputBiol</h3>
<section class="example">
<section class="title">
<h1>The Dynamic Shift Detector: An algorithm to identify changes in parameter values governing populations</h1>
<img src="assets/images/BahlaiPLOS.PNG" height="259" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/cbahlai">Bahlai C.A.</a> and <a href="">Zipkin E.F.</a> (2020) The Dynamic Shift Detector: An algorithm to identify changes in parameter values governing populations. <em>PLOS Computational Biology</em>. <a href="https://doi.org/10.1371/journal.pcbi.1007542">DOI: 10.1371/journal.pcbi.1007542</a>
</p>
<p>
<strong>Abstract</strong> - The “Dynamic Shift Detector” is an algorithm to identify changes in parameter values governing temporal fluctuations in populations with nonlinear dynamics. It uses an iterative approach to fitting subsets of time series data, then ranks the fit of break point combinations using model selection, assigning a relative weight to each break. In this paper, we examined the performance of the Dynamic Shift Detector with simulations and two case studies: one examining an invading populuation and the other focused on a declining population.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Bahlai_Zipkin_2020_PLOSComputBiol">Link to repo</a>
</p>
</section>
</section>
<h3 id="other2019G">Green_etal_2019_PTRS</h3>
<section class="example">
<section class="title">
<h1>Can hyena behaviour provide information on abundances of sympatric carnivores?</h1>
<img src="assets/images/GreenPTRS.jpg" height="115" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - Green D.S.*, <a href="https://github.com/farrmt">Farr M.T.</a>*, Holekamp K.E., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2019) Can hyena behaviour provide information on population trends of sympatric carnivores? <em>Philosophical Transactions of the Royal Society B</em>. <a href="https://royalsocietypublishing.org/doi/10.1098/rstb.2018.0052"> DOI: 10.1098/rstb.2018.0052</a>
<small>*Authors contributed equally.</small>
</p>
<p>
<strong>Abstract</strong> - We inquire whether hyena behaviours correlate with changes in abundance of hyenas or other carnivore species in the Masai Mara National Reserve (Kenya). We find that changes in spotted hyena behaviour in disturbed areas can be linked to changes in their demography (vignette 1) and that declines in lion–hyena interactions may be caused by competitive release of hyenas from declining lion abundance (vignette 2). We also demonstrate that in some cases, hyena behaviour and demography is linked to the density and distribution of sympatric carnivores species (vignettes 3 and 4).
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Green_etal_2019_PTRS">Link to repo</a>
</p>
</section>
</section>
<h3 id="other2019S">Sussman_etal_2019_MEE</h3>
<section class="example">
<section class="title">
<h1>A comparative analysis of common methods to identify waterbird hotspots</h1>
<img src="assets/images/sussman_hotspotcomparison.png" width="200">
</section>
<section class="content">
<p>
<strong>Citation</strong> - <a href="https://github.com/asussman52">Sussman A.L.</a>, Gardner B., Adams E.M., Salas L., Kenow K.P., Luukkonen D.R., Monfils M.J., Mueller W.P., Williams K.A., Leduc-Lapierre M., and <a href="https://github.com/ezipkin">Zipkin E.F.</a> (2019) A comparative analysis of common methods to identify waterbird hotspots. <em>Methods in Ecology and Evolution</em>. <a href=https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13209> DOI: 10.1111/2041-210X.13209</a>
</p>
<p>
<strong>Abstract</strong> - Identification of biodiversity "hotspots" is subjective and various methods can lead to different conclusions. We present the results of a comparative analysis of recent approaches (kernel density estimation, Getis-Ord Gi*, hotspot persistence, and hotspots conditional on presence) for identifying waterbird hotspots. We applied each of the methods to aerial-survey waterbird count data collected in the Great Lakes. Our results indicate that formal hotspot analysis frameworks do not always lead to the same conclusions.
</p>
<p>
<strong>Code and Data</strong> - <a href="https://github.com/zipkinlab/Sussman_etal_inreview_MEE">Link to repo</a>
</p>
</section>
</section>