Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

程序正确运行的时候应该是什么样的啊? #72

Open
Yongjiann opened this issue Jul 14, 2019 · 2 comments
Open

程序正确运行的时候应该是什么样的啊? #72

Yongjiann opened this issue Jul 14, 2019 · 2 comments

Comments

@Yongjiann
Copy link

I0714 22:21:06.095902 16048 main.py:87] accuracy: 98.70%; precision: 91.35%; recall: 90.13%; FB1: 90.73

2019-07-14 22:21:06,095 - log\train.log - INFO - LOC: precision: 92.31%; recall: 92.26%; FB1: 92.28 1950

I0714 22:21:06.095902 16048 main.py:87] LOC: precision: 92.31%; recall: 92.26%; FB1: 92.28 1950

2019-07-14 22:21:06,095 - log\train.log - INFO - ORG: precision: 87.19%; recall: 85.77%; FB1: 86.48 968

I0714 22:21:06.095902 16048 main.py:87] ORG: precision: 87.19%; recall: 85.77%; FB1: 86.48 968

2019-07-14 22:21:06,095 - log\train.log - INFO - PER: precision: 93.88%; recall: 90.27%; FB1: 92.04 850

I0714 22:21:06.095902 16048 main.py:87] PER: precision: 93.88%; recall: 90.27%; FB1: 92.04 850

2019-07-14 22:21:06,122 - log\train.log - INFO - evaluate:test
I0714 22:21:06.122297 16048 main.py:83] evaluate:test
2019-07-14 22:22:35,012 - log\train.log - INFO - processed 219197 tokens with 7707 phrases; found: 7658 phrases; correct: 6885.

I0714 22:22:35.012353 16048 main.py:87] processed 219197 tokens with 7707 phrases; found: 7658 phrases; correct: 6885.

2019-07-14 22:22:35,012 - log\train.log - INFO - accuracy: 98.47%; precision: 89.91%; recall: 89.33%; FB1: 89.62

I0714 22:22:35.012353 16048 main.py:87] accuracy: 98.47%; precision: 89.91%; recall: 89.33%; FB1: 89.62

2019-07-14 22:22:35,012 - log\train.log - INFO - LOC: precision: 90.54%; recall: 92.37%; FB1: 91.45 3732

I0714 22:22:35.012353 16048 main.py:87] LOC: precision: 90.54%; recall: 92.37%; FB1: 91.45 3732

2019-07-14 22:22:35,027 - log\train.log - INFO - ORG: precision: 84.39%; recall: 82.65%; FB1: 83.51 2140

I0714 22:22:35.027977 16048 main.py:87] ORG: precision: 84.39%; recall: 82.65%; FB1: 83.51 2140

2019-07-14 22:22:35,041 - log\train.log - INFO - PER: precision: 95.18%; recall: 91.20%; FB1: 93.15 1786

I0714 22:22:35.041897 16048 main.py:87] PER: precision: 95.18%; recall: 91.20%; FB1: 93.15 1786

2019-07-14 22:22:42,296 - log\train.log - INFO - iteration:18 step:52/1044, NER loss: 0.347525
I0714 22:22:42.296953 16048 main.py:182] iteration:18 step:52/1044, NER loss: 0.347525
2019-07-14 22:22:52,466 - log\train.log - INFO - iteration:18 step:152/1044, NER loss: 0.271676
I0714 22:22:52.466810 16048 main.py:182] iteration:18 step:152/1044, NER loss: 0.271676
2019-07-14 22:23:05,443 - log\train.log - INFO - iteration:18 step:252/1044, NER loss: 0.316673
I0714 22:23:05.443189 16048 main.py:182] iteration:18 step:252/1044, NER loss: 0.316673
2019-07-14 22:23:16,387 - log\train.log - INFO - iteration:18 step:352/1044, NER loss: 0.323721
I0714 22:23:16.387084 16048 main.py:182] iteration:18 step:352/1044, NER loss: 0.323721
2019-07-14 22:23:30,459 - log\train.log - INFO - iteration:18 step:452/1044, NER loss: 0.356703
I0714 22:23:30.459775 16048 main.py:182] iteration:18 step:452/1044, NER loss: 0.356703
2019-07-14 22:23:44,317 - log\train.log - INFO - iteration:18 step:552/1044, NER loss: 0.342180
I0714 22:23:44.317629 16048 main.py:182] iteration:18 step:552/1044, NER loss: 0.342180
2019-07-14 22:23:56,616 - log\train.log - INFO - iteration:18 step:652/1044, NER loss: 0.356979
I0714 22:23:56.616914 16048 main.py:182] iteration:18 step:652/1044, NER loss: 0.356979
2019-07-14 22:24:06,993 - log\train.log - INFO - iteration:18 step:752/1044, NER loss: 0.351169
I0714 22:24:06.993116 16048 main.py:182] iteration:18 step:752/1044, NER loss: 0.351169
2019-07-14 22:24:18,618 - log\train.log - INFO - iteration:18 step:852/1044, NER loss: 0.337563
I0714 22:24:18.618681 16048 main.py:182] iteration:18 step:852/1044, NER loss: 0.337563
2019-07-14 22:24:29,315 - log\train.log - INFO - iteration:18 step:952/1044, NER loss: 0.341162
I0714 22:24:29.315000 16048 main.py:182] iteration:18 step:952/1044, NER loss: 0.341162
2019-07-14 22:24:40,397 - log\train.log - INFO - evaluate:dev
I0714 22:24:40.397369 16048 main.py:83] evaluate:dev
2019-07-14 22:25:24,477 - log\train.log - INFO - processed 109870 tokens with 3819 phrases; found: 3788 phrases; correct: 3468.

I0714 22:25:24.477840 16048 main.py:87] processed 109870 tokens with 3819 phrases; found: 3788 phrases; correct: 3468.

2019-07-14 22:25:24,477 - log\train.log - INFO - accuracy: 98.68%; precision: 91.55%; recall: 90.81%; FB1: 91.18

I0714 22:25:24.477840 16048 main.py:87] accuracy: 98.68%; precision: 91.55%; recall: 90.81%; FB1: 91.18

2019-07-14 22:25:24,477 - log\train.log - INFO - LOC: precision: 92.69%; recall: 92.98%; FB1: 92.84 1957

I0714 22:25:24.477840 16048 main.py:87] LOC: precision: 92.69%; recall: 92.98%; FB1: 92.84 1957

2019-07-14 22:25:24,495 - log\train.log - INFO - ORG: precision: 87.76%; recall: 85.98%; FB1: 86.86 964

I0714 22:25:24.495465 16048 main.py:87] ORG: precision: 87.76%; recall: 85.98%; FB1: 86.86 964

2019-07-14 22:25:24,504 - log\train.log - INFO - PER: precision: 93.19%; recall: 91.40%; FB1: 92.29 867

I0714 22:25:24.504460 16048 main.py:87] PER: precision: 93.19%; recall: 91.40%; FB1: 92.29 867

2019-07-14 22:25:24,994 - log\train.log - INFO - new best dev f1 score:91.180
I0714 22:25:24.994682 16048 main.py:94] new best dev f1 score:91.180
2019-07-14 22:25:26,043 - log\train.log - INFO - model saved
I0714 22:25:26.043349 16048 utils.py:167] model saved
2019-07-14 22:25:26,044 - log\train.log - INFO - evaluate:test
I0714 22:25:26.044801 16048 main.py:83] evaluate:test
.......
我的一直在重复打印这些东西...是不是有问题啊

@ahtso
Copy link

ahtso commented Jul 22, 2019

main.py 裡面的設定 max_epoch 查看你設定多少吧?
你這應該是還沒跑完 他每跑一次迴圈都會輸出計算指標

@JarvisUSTC
Copy link

我设成1时为什么第一次结束不停。。。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants